芝麻web文件管理V1.00
编辑当前文件:/home/qrafawbu/store.kwesioben.com/vendor/phpseclib/phpseclib/phpseclib/Crypt/Hash.php
* setKey('abcdefg'); * * echo base64_encode($hash->hash('abcdefg')); * ?> * * * @author Jim Wigginton
* @copyright 2015 Jim Wigginton * @author Andreas Fischer
* @copyright 2015 Andreas Fischer * @license http://www.opensource.org/licenses/mit-license.html MIT License * @link http://phpseclib.sourceforge.net */ namespace phpseclib3\Crypt; use phpseclib3\Common\Functions\Strings; use phpseclib3\Exception\InsufficientSetupException; use phpseclib3\Exception\UnsupportedAlgorithmException; use phpseclib3\Math\BigInteger; use phpseclib3\Math\PrimeField; /** * @author Jim Wigginton
* @author Andreas Fischer
*/ class Hash { /** * Padding Types * */ const PADDING_KECCAK = 1; /** * Padding Types * */ const PADDING_SHA3 = 2; /** * Padding Types * */ const PADDING_SHAKE = 3; /** * Padding Type * * Only used by SHA3 * * @var int */ private $paddingType = 0; /** * Hash Parameter * * @see self::setHash() * @var int */ private $hashParam; /** * Byte-length of hash output (Internal HMAC) * * @see self::setHash() * @var int */ private $length; /** * Hash Algorithm * * @see self::setHash() * @var string */ private $algo; /** * Key * * @see self::setKey() * @var string */ private $key = false; /** * Nonce * * @see self::setNonce() * @var string */ private $nonce = false; /** * Hash Parameters * * @var array */ private $parameters = []; /** * Computed Key * * @see self::_computeKey() * @var string */ private $computedKey = false; /** * Outer XOR (Internal HMAC) * * Used only for sha512/* * * @see self::hash() * @var string */ private $opad; /** * Inner XOR (Internal HMAC) * * Used only for sha512/* * * @see self::hash() * @var string */ private $ipad; /** * Recompute AES Key * * Used only for umac * * @see self::hash() * @var boolean */ private $recomputeAESKey; /** * umac cipher object * * @see self::hash() * @var \phpseclib3\Crypt\AES */ private $c; /** * umac pad * * @see self::hash() * @var string */ private $pad; /** * Block Size * * @var int */ private $blockSize; /**#@+ * UMAC variables * * @var PrimeField */ private static $factory36; private static $factory64; private static $factory128; private static $offset64; private static $offset128; private static $marker64; private static $marker128; private static $maxwordrange64; private static $maxwordrange128; /**#@-*/ /** * Default Constructor. * * @param string $hash */ public function __construct($hash = 'sha256') { $this->setHash($hash); } /** * Sets the key for HMACs * * Keys can be of any length. * * @param string $key */ public function setKey($key = false) { $this->key = $key; $this->computeKey(); $this->recomputeAESKey = true; } /** * Sets the nonce for UMACs * * Keys can be of any length. * * @param string $nonce */ public function setNonce($nonce = false) { switch (true) { case !is_string($nonce): case strlen($nonce) > 0 && strlen($nonce) <= 16: $this->recomputeAESKey = true; $this->nonce = $nonce; return; } throw new \LengthException('The nonce length must be between 1 and 16 bytes, inclusive'); } /** * Pre-compute the key used by the HMAC * * Quoting http://tools.ietf.org/html/rfc2104#section-2, "Applications that use keys longer than B bytes * will first hash the key using H and then use the resultant L byte string as the actual key to HMAC." * * As documented in https://www.reddit.com/r/PHP/comments/9nct2l/symfonypolyfill_hash_pbkdf2_correct_fix_for/ * when doing an HMAC multiple times it's faster to compute the hash once instead of computing it during * every call * */ private function computeKey() { if ($this->key === false) { $this->computedKey = false; return; } if (strlen($this->key) <= $this->getBlockLengthInBytes()) { $this->computedKey = $this->key; return; } $this->computedKey = is_array($this->algo) ? call_user_func($this->algo, $this->key) : hash($this->algo, $this->key, true); } /** * Gets the hash function. * * As set by the constructor or by the setHash() method. * * @return string */ public function getHash() { return $this->hashParam; } /** * Sets the hash function. * * @param string $hash */ public function setHash($hash) { $this->hashParam = $hash = strtolower($hash); switch ($hash) { case 'umac-32': case 'umac-64': case 'umac-96': case 'umac-128': $this->blockSize = 128; $this->length = abs(substr($hash, -3)) >> 3; $this->algo = 'umac'; return; case 'md2-96': case 'md5-96': case 'sha1-96': case 'sha224-96': case 'sha256-96': case 'sha384-96': case 'sha512-96': case 'sha512/224-96': case 'sha512/256-96': $hash = substr($hash, 0, -3); $this->length = 12; // 96 / 8 = 12 break; case 'md2': case 'md5': $this->length = 16; break; case 'sha1': $this->length = 20; break; case 'sha224': case 'sha512/224': case 'sha3-224': $this->length = 28; break; case 'keccak256': $this->paddingType = self::PADDING_KECCAK; // fall-through case 'sha256': case 'sha512/256': case 'sha3-256': $this->length = 32; break; case 'sha384': case 'sha3-384': $this->length = 48; break; case 'sha512': case 'sha3-512': $this->length = 64; break; default: if (preg_match('#^(shake(?:128|256))-(\d+)$#', $hash, $matches)) { $this->paddingType = self::PADDING_SHAKE; $hash = $matches[1]; $this->length = $matches[2] >> 3; } else { throw new UnsupportedAlgorithmException( "$hash is not a supported algorithm" ); } } switch ($hash) { case 'md2': case 'md2-96': $this->blockSize = 128; break; case 'md5-96': case 'sha1-96': case 'sha224-96': case 'sha256-96': case 'md5': case 'sha1': case 'sha224': case 'sha256': $this->blockSize = 512; break; case 'sha3-224': $this->blockSize = 1152; // 1600 - 2*224 break; case 'sha3-256': case 'shake256': case 'keccak256': $this->blockSize = 1088; // 1600 - 2*256 break; case 'sha3-384': $this->blockSize = 832; // 1600 - 2*384 break; case 'sha3-512': $this->blockSize = 576; // 1600 - 2*512 break; case 'shake128': $this->blockSize = 1344; // 1600 - 2*128 break; default: $this->blockSize = 1024; } if (in_array(substr($hash, 0, 5), ['sha3-', 'shake', 'kecca'])) { // PHP 7.1.0 introduced support for "SHA3 fixed mode algorithms": // http://php.net/ChangeLog-7.php#7.1.0 if (version_compare(PHP_VERSION, '7.1.0') < 0 || substr($hash, 0, 5) != 'sha3-') { //preg_match('#(\d+)$#', $hash, $matches); //$this->parameters['capacity'] = 2 * $matches[1]; // 1600 - $this->blockSize //$this->parameters['rate'] = 1600 - $this->parameters['capacity']; // == $this->blockSize if (!$this->paddingType) { $this->paddingType = self::PADDING_SHA3; } $this->parameters = [ 'capacity' => 1600 - $this->blockSize, 'rate' => $this->blockSize, 'length' => $this->length, 'padding' => $this->paddingType ]; $hash = ['phpseclib3\Crypt\Hash', PHP_INT_SIZE == 8 ? 'sha3_64' : 'sha3_32']; } } if ($hash == 'sha512/224' || $hash == 'sha512/256') { // PHP 7.1.0 introduced sha512/224 and sha512/256 support: // http://php.net/ChangeLog-7.php#7.1.0 if (version_compare(PHP_VERSION, '7.1.0') < 0) { // from http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf#page=24 $initial = $hash == 'sha512/256' ? [ '22312194FC2BF72C', '9F555FA3C84C64C2', '2393B86B6F53B151', '963877195940EABD', '96283EE2A88EFFE3', 'BE5E1E2553863992', '2B0199FC2C85B8AA', '0EB72DDC81C52CA2' ] : [ '8C3D37C819544DA2', '73E1996689DCD4D6', '1DFAB7AE32FF9C82', '679DD514582F9FCF', '0F6D2B697BD44DA8', '77E36F7304C48942', '3F9D85A86A1D36C8', '1112E6AD91D692A1' ]; for ($i = 0; $i < 8; $i++) { $initial[$i] = new BigInteger($initial[$i], 16); $initial[$i]->setPrecision(64); } $this->parameters = compact('initial'); $hash = ['phpseclib3\Crypt\Hash', 'sha512']; } } if (is_array($hash)) { $b = $this->blockSize >> 3; $this->ipad = str_repeat(chr(0x36), $b); $this->opad = str_repeat(chr(0x5C), $b); } $this->algo = $hash; $this->computeKey(); } /** * KDF: Key-Derivation Function * * The key-derivation function generates pseudorandom bits used to key the hash functions. * * @param int $index a non-negative integer less than 2^64 * @param int $numbytes a non-negative integer less than 2^64 * @return string string of length numbytes bytes */ private function kdf($index, $numbytes) { $this->c->setIV(pack('N4', 0, $index, 0, 1)); return $this->c->encrypt(str_repeat("\0", $numbytes)); } /** * PDF Algorithm * * @return string string of length taglen bytes. */ private function pdf() { $k = $this->key; $nonce = $this->nonce; $taglen = $this->length; // // Extract and zero low bit(s) of Nonce if needed // if ($taglen <= 8) { $last = strlen($nonce) - 1; $mask = $taglen == 4 ? "\3" : "\1"; $index = $nonce[$last] & $mask; $nonce[$last] = $nonce[$last] ^ $index; } // // Make Nonce BLOCKLEN bytes by appending zeroes if needed // $nonce = str_pad($nonce, 16, "\0"); // // Generate subkey, encipher and extract indexed substring // $kp = $this->kdf(0, 16); $c = new AES('ctr'); $c->disablePadding(); $c->setKey($kp); $c->setIV($nonce); $t = $c->encrypt("\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"); // we could use ord() but per https://paragonie.com/blog/2016/06/constant-time-encoding-boring-cryptography-rfc-4648-and-you // unpack() doesn't leak timing info return $taglen <= 8 ? substr($t, unpack('C', $index)[1] * $taglen, $taglen) : substr($t, 0, $taglen); } /** * UHASH Algorithm * * @param string $m string of length less than 2^67 bits. * @param int $taglen the integer 4, 8, 12 or 16. * @return string string of length taglen bytes. */ private function uhash($m, $taglen) { // // One internal iteration per 4 bytes of output // $iters = $taglen >> 2; // // Define total key needed for all iterations using KDF. // L1Key reuses most key material between iterations. // //$L1Key = $this->kdf(1, 1024 + ($iters - 1) * 16); $L1Key = $this->kdf(1, (1024 + ($iters - 1)) * 16); $L2Key = $this->kdf(2, $iters * 24); $L3Key1 = $this->kdf(3, $iters * 64); $L3Key2 = $this->kdf(4, $iters * 4); // // For each iteration, extract key and do three-layer hash. // If bytelength(M) <= 1024, then skip L2-HASH. // $y = ''; for ($i = 0; $i < $iters; $i++) { $L1Key_i = substr($L1Key, $i * 16, 1024); $L2Key_i = substr($L2Key, $i * 24, 24); $L3Key1_i = substr($L3Key1, $i * 64, 64); $L3Key2_i = substr($L3Key2, $i * 4, 4); $a = self::L1Hash($L1Key_i, $m); $b = strlen($m) <= 1024 ? "\0\0\0\0\0\0\0\0$a" : self::L2Hash($L2Key_i, $a); $c = self::L3Hash($L3Key1_i, $L3Key2_i, $b); $y .= $c; } return $y; } /** * L1-HASH Algorithm * * The first-layer hash breaks the message into 1024-byte chunks and * hashes each with a function called NH. Concatenating the results * forms a string, which is up to 128 times shorter than the original. * * @param string $k string of length 1024 bytes. * @param string $m string of length less than 2^67 bits. * @return string string of length (8 * ceil(bitlength(M)/8192)) bytes. */ private static function L1Hash($k, $m) { // // Break M into 1024 byte chunks (final chunk may be shorter) // $m = str_split($m, 1024); // // For each chunk, except the last: endian-adjust, NH hash // and add bit-length. Use results to build Y. // $length = new BigInteger(1024 * 8); $y = ''; for ($i = 0; $i < count($m) - 1; $i++) { $m[$i] = pack('N*', ...unpack('V*', $m[$i])); // ENDIAN-SWAP $y .= static::nh($k, $m[$i], $length); } // // For the last chunk: pad to 32-byte boundary, endian-adjust, // NH hash and add bit-length. Concatenate the result to Y. // $length = count($m) ? strlen($m[$i]) : 0; $pad = 32 - ($length % 32); $pad = max(32, $length + $pad % 32); $m[$i] = str_pad(isset($m[$i]) ? $m[$i] : '', $pad, "\0"); // zeropad $m[$i] = pack('N*', ...unpack('V*', $m[$i])); // ENDIAN-SWAP $y .= static::nh($k, $m[$i], new BigInteger($length * 8)); return $y; } /** * NH Algorithm * * @param string $k string of length 1024 bytes. * @param string $m string with length divisible by 32 bytes. * @return string string of length 8 bytes. */ private static function nh($k, $m, $length) { $toUInt32 = function ($x) { $x = new BigInteger($x, 256); $x->setPrecision(32); return $x; }; // // Break M and K into 4-byte chunks // //$t = strlen($m) >> 2; $m = str_split($m, 4); $t = count($m); $k = str_split($k, 4); $k = array_pad(array_slice($k, 0, $t), $t, 0); $m = array_map($toUInt32, $m); $k = array_map($toUInt32, $k); // // Perform NH hash on the chunks, pairing words for multiplication // which are 4 apart to accommodate vector-parallelism. // $y = new BigInteger(); $y->setPrecision(64); $i = 0; while ($i < $t) { $temp = $m[$i]->add($k[$i]); $temp->setPrecision(64); $temp = $temp->multiply($m[$i + 4]->add($k[$i + 4])); $y = $y->add($temp); $temp = $m[$i + 1]->add($k[$i + 1]); $temp->setPrecision(64); $temp = $temp->multiply($m[$i + 5]->add($k[$i + 5])); $y = $y->add($temp); $temp = $m[$i + 2]->add($k[$i + 2]); $temp->setPrecision(64); $temp = $temp->multiply($m[$i + 6]->add($k[$i + 6])); $y = $y->add($temp); $temp = $m[$i + 3]->add($k[$i + 3]); $temp->setPrecision(64); $temp = $temp->multiply($m[$i + 7]->add($k[$i + 7])); $y = $y->add($temp); $i += 8; } return $y->add($length)->toBytes(); } /** * L2-HASH: Second-Layer Hash * * The second-layer rehashes the L1-HASH output using a polynomial hash * called POLY. If the L1-HASH output is long, then POLY is called once * on a prefix of the L1-HASH output and called using different settings * on the remainder. (This two-step hashing of the L1-HASH output is * needed only if the message length is greater than 16 megabytes.) * Careful implementation of POLY is necessary to avoid a possible * timing attack (see Section 6.6 for more information). * * @param string $k string of length 24 bytes. * @param string $m string of length less than 2^64 bytes. * @return string string of length 16 bytes. */ private static function L2Hash($k, $m) { // // Extract keys and restrict to special key-sets // $k64 = $k & "\x01\xFF\xFF\xFF\x01\xFF\xFF\xFF"; $k64 = new BigInteger($k64, 256); $k128 = substr($k, 8) & "\x01\xFF\xFF\xFF\x01\xFF\xFF\xFF\x01\xFF\xFF\xFF\x01\xFF\xFF\xFF"; $k128 = new BigInteger($k128, 256); // // If M is no more than 2^17 bytes, hash under 64-bit prime, // otherwise, hash first 2^17 bytes under 64-bit prime and // remainder under 128-bit prime. // if (strlen($m) <= 0x20000) { // 2^14 64-bit words $y = self::poly(64, self::$maxwordrange64, $k64, $m); } else { $m_1 = substr($m, 0, 0x20000); // 1 << 17 $m_2 = substr($m, 0x20000) . "\x80"; $length = strlen($m_2); $pad = 16 - ($length % 16); $pad %= 16; $m_2 = str_pad($m_2, $length + $pad, "\0"); // zeropad $y = self::poly(64, self::$maxwordrange64, $k64, $m_1); $y = str_pad($y, 16, "\0", STR_PAD_LEFT); $y = self::poly(128, self::$maxwordrange128, $k128, $y . $m_2); } return str_pad($y, 16, "\0", STR_PAD_LEFT); } /** * POLY Algorithm * * @param int $wordbits the integer 64 or 128. * @param BigInteger $maxwordrange positive integer less than 2^wordbits. * @param BigInteger $k integer in the range 0 ... prime(wordbits) - 1. * @param string $m string with length divisible by (wordbits / 8) bytes. * @return integer in the range 0 ... prime(wordbits) - 1. */ private static function poly($wordbits, $maxwordrange, $k, $m) { // // Define constants used for fixing out-of-range words // $wordbytes = $wordbits >> 3; if ($wordbits == 128) { $factory = self::$factory128; $offset = self::$offset128; $marker = self::$marker128; } else { $factory = self::$factory64; $offset = self::$offset64; $marker = self::$marker64; } $k = $factory->newInteger($k); // // Break M into chunks of length wordbytes bytes // $m_i = str_split($m, $wordbytes); // // Each input word m is compared with maxwordrange. If not smaller // then 'marker' and (m - offset), both in range, are hashed. // $y = $factory->newInteger(new BigInteger(1)); foreach ($m_i as $m) { $m = $factory->newInteger(new BigInteger($m, 256)); if ($m->compare($maxwordrange) >= 0) { $y = $k->multiply($y)->add($marker); $y = $k->multiply($y)->add($m->subtract($offset)); } else { $y = $k->multiply($y)->add($m); } } return $y->toBytes(); } /** * L3-HASH: Third-Layer Hash * * The output from L2-HASH is 16 bytes long. This final hash function * hashes the 16-byte string to a fixed length of 4 bytes. * * @param string $k1 string of length 64 bytes. * @param string $k2 string of length 4 bytes. * @param string $m string of length 16 bytes. * @return string string of length 4 bytes. */ private static function L3Hash($k1, $k2, $m) { $factory = self::$factory36; $y = $factory->newInteger(new BigInteger()); for ($i = 0; $i < 8; $i++) { $m_i = $factory->newInteger(new BigInteger(substr($m, 2 * $i, 2), 256)); $k_i = $factory->newInteger(new BigInteger(substr($k1, 8 * $i, 8), 256)); $y = $y->add($m_i->multiply($k_i)); } $y = str_pad(substr($y->toBytes(), -4), 4, "\0", STR_PAD_LEFT); $y = $y ^ $k2; return $y; } /** * Compute the Hash / HMAC / UMAC. * * @param string $text * @return string */ public function hash($text) { $algo = $this->algo; if ($algo == 'umac') { if ($this->recomputeAESKey) { if (!is_string($this->nonce)) { throw new InsufficientSetupException('No nonce has been set'); } if (!is_string($this->key)) { throw new InsufficientSetupException('No key has been set'); } if (strlen($this->key) != 16) { throw new \LengthException('Key must be 16 bytes long'); } if (!isset(self::$maxwordrange64)) { $one = new BigInteger(1); $prime36 = new BigInteger("\x00\x00\x00\x0F\xFF\xFF\xFF\xFB", 256); self::$factory36 = new PrimeField($prime36); $prime64 = new BigInteger("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xC5", 256); self::$factory64 = new PrimeField($prime64); $prime128 = new BigInteger("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x61", 256); self::$factory128 = new PrimeField($prime128); self::$offset64 = new BigInteger("\1\0\0\0\0\0\0\0\0", 256); self::$offset64 = self::$factory64->newInteger(self::$offset64->subtract($prime64)); self::$offset128 = new BigInteger("\1\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 256); self::$offset128 = self::$factory128->newInteger(self::$offset128->subtract($prime128)); self::$marker64 = self::$factory64->newInteger($prime64->subtract($one)); self::$marker128 = self::$factory128->newInteger($prime128->subtract($one)); $maxwordrange64 = $one->bitwise_leftShift(64)->subtract($one->bitwise_leftShift(32)); self::$maxwordrange64 = self::$factory64->newInteger($maxwordrange64); $maxwordrange128 = $one->bitwise_leftShift(128)->subtract($one->bitwise_leftShift(96)); self::$maxwordrange128 = self::$factory128->newInteger($maxwordrange128); } $this->c = new AES('ctr'); $this->c->disablePadding(); $this->c->setKey($this->key); $this->pad = $this->pdf(); $this->recomputeAESKey = false; } $hashedmessage = $this->uhash($text, $this->length); return $hashedmessage ^ $this->pad; } if (is_array($algo)) { if (empty($this->key) || !is_string($this->key)) { return substr($algo($text, ...array_values($this->parameters)), 0, $this->length); } // SHA3 HMACs are discussed at https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf#page=30 $key = str_pad($this->computedKey, $b, chr(0)); $temp = $this->ipad ^ $key; $temp .= $text; $temp = substr($algo($temp, ...array_values($this->parameters)), 0, $this->length); $output = $this->opad ^ $key; $output .= $temp; $output = $algo($output, ...array_values($this->parameters)); return substr($output, 0, $this->length); } $output = !empty($this->key) || is_string($this->key) ? hash_hmac($algo, $text, $this->computedKey, true) : hash($algo, $text, true); return strlen($output) > $this->length ? substr($output, 0, $this->length) : $output; } /** * Returns the hash length (in bits) * * @return int */ public function getLength() { return $this->length << 3; } /** * Returns the hash length (in bytes) * * @return int */ public function getLengthInBytes() { return $this->length; } /** * Returns the block length (in bits) * * @return int */ public function getBlockLength() { return $this->blockSize; } /** * Returns the block length (in bytes) * * @return int */ public function getBlockLengthInBytes() { return $this->blockSize >> 3; } /** * Pads SHA3 based on the mode * * @param int $padLength * @param int $padType * @return string */ private static function sha3_pad($padLength, $padType) { switch ($padType) { case self::PADDING_KECCAK: $temp = chr(0x01) . str_repeat("\0", $padLength - 1); $temp[$padLength - 1] = $temp[$padLength - 1] | chr(0x80); return $temp; case self::PADDING_SHAKE: $temp = chr(0x1F) . str_repeat("\0", $padLength - 1); $temp[$padLength - 1] = $temp[$padLength - 1] | chr(0x80); return $temp; //case self::PADDING_SHA3: default: // from https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf#page=36 return $padLength == 1 ? chr(0x86) : chr(0x06) . str_repeat("\0", $padLength - 2) . chr(0x80); } } /** * Pure-PHP 32-bit implementation of SHA3 * * Whereas BigInteger.php's 32-bit engine works on PHP 64-bit this 32-bit implementation * of SHA3 will *not* work on PHP 64-bit. This is because this implementation * employees bitwise NOTs and bitwise left shifts. And the round constants only work * on 32-bit PHP. eg. dechex(-2147483648) returns 80000000 on 32-bit PHP and * FFFFFFFF80000000 on 64-bit PHP. Sure, we could do bitwise ANDs but that would slow * things down. * * SHA512 requires BigInteger to simulate 64-bit unsigned integers because SHA2 employees * addition whereas SHA3 just employees bitwise operators. PHP64 only supports signed * 64-bit integers, which complicates addition, whereas that limitation isn't an issue * for SHA3. * * In https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=919061#page=16 KECCAK[C] is * defined as "the KECCAK instance with KECCAK-f[1600] as the underlying permutation and * capacity c". This is relevant because, altho the KECCAK standard defines a mode * (KECCAK-f[800]) designed for 32-bit machines that mode is incompatible with SHA3 * * @param string $p * @param int $c * @param int $r * @param int $d * @param int $padType */ private static function sha3_32($p, $c, $r, $d, $padType) { $block_size = $r >> 3; $padLength = $block_size - (strlen($p) % $block_size); $num_ints = $block_size >> 2; $p .= static::sha3_pad($padLength, $padType); $n = strlen($p) / $r; // number of blocks $s = [ [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0]] ]; $p = str_split($p, $block_size); foreach ($p as $pi) { $pi = unpack('V*', $pi); $x = $y = 0; for ($i = 1; $i <= $num_ints; $i += 2) { $s[$x][$y][0] ^= $pi[$i + 1]; $s[$x][$y][1] ^= $pi[$i]; if (++$y == 5) { $y = 0; $x++; } } static::processSHA3Block32($s); } $z = ''; $i = $j = 0; while (strlen($z) < $d) { $z .= pack('V2', $s[$i][$j][1], $s[$i][$j++][0]); if ($j == 5) { $j = 0; $i++; if ($i == 5) { $i = 0; static::processSHA3Block32($s); } } } return $z; } /** * 32-bit block processing method for SHA3 * * @param array $s */ private static function processSHA3Block32(&$s) { static $rotationOffsets = [ [ 0, 1, 62, 28, 27], [36, 44, 6, 55, 20], [ 3, 10, 43, 25, 39], [41, 45, 15, 21, 8], [18, 2, 61, 56, 14] ]; // the standards give these constants in hexadecimal notation. it's tempting to want to use // that same notation, here, however, we can't, because 0x80000000, on PHP32, is a positive // float - not the negative int that we need to be in PHP32. so we use -2147483648 instead static $roundConstants = [ [0, 1], [0, 32898], [-2147483648, 32906], [-2147483648, -2147450880], [0, 32907], [0, -2147483647], [-2147483648, -2147450751], [-2147483648, 32777], [0, 138], [0, 136], [0, -2147450871], [0, -2147483638], [0, -2147450741], [-2147483648, 139], [-2147483648, 32905], [-2147483648, 32771], [-2147483648, 32770], [-2147483648, 128], [0, 32778], [-2147483648, -2147483638], [-2147483648, -2147450751], [-2147483648, 32896], [0, -2147483647], [-2147483648, -2147450872] ]; for ($round = 0; $round < 24; $round++) { // theta step $parity = $rotated = []; for ($i = 0; $i < 5; $i++) { $parity[] = [ $s[0][$i][0] ^ $s[1][$i][0] ^ $s[2][$i][0] ^ $s[3][$i][0] ^ $s[4][$i][0], $s[0][$i][1] ^ $s[1][$i][1] ^ $s[2][$i][1] ^ $s[3][$i][1] ^ $s[4][$i][1] ]; $rotated[] = static::rotateLeft32($parity[$i], 1); } $temp = [ [$parity[4][0] ^ $rotated[1][0], $parity[4][1] ^ $rotated[1][1]], [$parity[0][0] ^ $rotated[2][0], $parity[0][1] ^ $rotated[2][1]], [$parity[1][0] ^ $rotated[3][0], $parity[1][1] ^ $rotated[3][1]], [$parity[2][0] ^ $rotated[4][0], $parity[2][1] ^ $rotated[4][1]], [$parity[3][0] ^ $rotated[0][0], $parity[3][1] ^ $rotated[0][1]] ]; for ($i = 0; $i < 5; $i++) { for ($j = 0; $j < 5; $j++) { $s[$i][$j][0] ^= $temp[$j][0]; $s[$i][$j][1] ^= $temp[$j][1]; } } $st = $s; // rho and pi steps for ($i = 0; $i < 5; $i++) { for ($j = 0; $j < 5; $j++) { $st[(2 * $i + 3 * $j) % 5][$j] = static::rotateLeft32($s[$j][$i], $rotationOffsets[$j][$i]); } } // chi step for ($i = 0; $i < 5; $i++) { $s[$i][0] = [ $st[$i][0][0] ^ (~$st[$i][1][0] & $st[$i][2][0]), $st[$i][0][1] ^ (~$st[$i][1][1] & $st[$i][2][1]) ]; $s[$i][1] = [ $st[$i][1][0] ^ (~$st[$i][2][0] & $st[$i][3][0]), $st[$i][1][1] ^ (~$st[$i][2][1] & $st[$i][3][1]) ]; $s[$i][2] = [ $st[$i][2][0] ^ (~$st[$i][3][0] & $st[$i][4][0]), $st[$i][2][1] ^ (~$st[$i][3][1] & $st[$i][4][1]) ]; $s[$i][3] = [ $st[$i][3][0] ^ (~$st[$i][4][0] & $st[$i][0][0]), $st[$i][3][1] ^ (~$st[$i][4][1] & $st[$i][0][1]) ]; $s[$i][4] = [ $st[$i][4][0] ^ (~$st[$i][0][0] & $st[$i][1][0]), $st[$i][4][1] ^ (~$st[$i][0][1] & $st[$i][1][1]) ]; } // iota step $s[0][0][0] ^= $roundConstants[$round][0]; $s[0][0][1] ^= $roundConstants[$round][1]; } } /** * Rotate 32-bit int * * @param array $x * @param int $shift */ private static function rotateLeft32($x, $shift) { if ($shift < 32) { list($hi, $lo) = $x; } else { $shift -= 32; list($lo, $hi) = $x; } return [ ($hi << $shift) | (($lo >> (32 - $shift)) & (1 << $shift) - 1), ($lo << $shift) | (($hi >> (32 - $shift)) & (1 << $shift) - 1) ]; } /** * Pure-PHP 64-bit implementation of SHA3 * * @param string $p * @param int $c * @param int $r * @param int $d * @param int $padType */ private static function sha3_64($p, $c, $r, $d, $padType) { $block_size = $r >> 3; $padLength = $block_size - (strlen($p) % $block_size); $num_ints = $block_size >> 2; $p .= static::sha3_pad($padLength, $padType); $n = strlen($p) / $r; // number of blocks $s = [ [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0] ]; $p = str_split($p, $block_size); foreach ($p as $pi) { $pi = unpack('P*', $pi); $x = $y = 0; foreach ($pi as $subpi) { $s[$x][$y++] ^= $subpi; if ($y == 5) { $y = 0; $x++; } } static::processSHA3Block64($s); } $z = ''; $i = $j = 0; while (strlen($z) < $d) { $z .= pack('P', $s[$i][$j++]); if ($j == 5) { $j = 0; $i++; if ($i == 5) { $i = 0; static::processSHA3Block64($s); } } } return $z; } /** * 64-bit block processing method for SHA3 * * @param array $s */ private static function processSHA3Block64(&$s) { static $rotationOffsets = [ [ 0, 1, 62, 28, 27], [36, 44, 6, 55, 20], [ 3, 10, 43, 25, 39], [41, 45, 15, 21, 8], [18, 2, 61, 56, 14] ]; static $roundConstants = [ 1, 32898, -9223372036854742902, -9223372034707259392, 32907, 2147483649, -9223372034707259263, -9223372036854743031, 138, 136, 2147516425, 2147483658, 2147516555, -9223372036854775669, -9223372036854742903, -9223372036854743037, -9223372036854743038, -9223372036854775680, 32778, -9223372034707292150, -9223372034707259263, -9223372036854742912, 2147483649, -9223372034707259384 ]; for ($round = 0; $round < 24; $round++) { // theta step $parity = []; for ($i = 0; $i < 5; $i++) { $parity[] = $s[0][$i] ^ $s[1][$i] ^ $s[2][$i] ^ $s[3][$i] ^ $s[4][$i]; } $temp = [ $parity[4] ^ static::rotateLeft64($parity[1], 1), $parity[0] ^ static::rotateLeft64($parity[2], 1), $parity[1] ^ static::rotateLeft64($parity[3], 1), $parity[2] ^ static::rotateLeft64($parity[4], 1), $parity[3] ^ static::rotateLeft64($parity[0], 1) ]; for ($i = 0; $i < 5; $i++) { for ($j = 0; $j < 5; $j++) { $s[$i][$j] ^= $temp[$j]; } } $st = $s; // rho and pi steps for ($i = 0; $i < 5; $i++) { for ($j = 0; $j < 5; $j++) { $st[(2 * $i + 3 * $j) % 5][$j] = static::rotateLeft64($s[$j][$i], $rotationOffsets[$j][$i]); } } // chi step for ($i = 0; $i < 5; $i++) { $s[$i] = [ $st[$i][0] ^ (~$st[$i][1] & $st[$i][2]), $st[$i][1] ^ (~$st[$i][2] & $st[$i][3]), $st[$i][2] ^ (~$st[$i][3] & $st[$i][4]), $st[$i][3] ^ (~$st[$i][4] & $st[$i][0]), $st[$i][4] ^ (~$st[$i][0] & $st[$i][1]) ]; } // iota step $s[0][0] ^= $roundConstants[$round]; } } /** * Rotate 64-bit int * * @param int $x * @param int $shift */ private static function rotateLeft64($x, $shift) { return ($x << $shift) | (($x >> (64 - $shift)) & ((1 << $shift) - 1)); } /** * Pure-PHP implementation of SHA512 * * @param string $m * @param array $hash * @return string */ private static function sha512($m, $hash) { static $k; if (!isset($k)) { // Initialize table of round constants // (first 64 bits of the fractional parts of the cube roots of the first 80 primes 2..409) $k = [ '428a2f98d728ae22', '7137449123ef65cd', 'b5c0fbcfec4d3b2f', 'e9b5dba58189dbbc', '3956c25bf348b538', '59f111f1b605d019', '923f82a4af194f9b', 'ab1c5ed5da6d8118', 'd807aa98a3030242', '12835b0145706fbe', '243185be4ee4b28c', '550c7dc3d5ffb4e2', '72be5d74f27b896f', '80deb1fe3b1696b1', '9bdc06a725c71235', 'c19bf174cf692694', 'e49b69c19ef14ad2', 'efbe4786384f25e3', '0fc19dc68b8cd5b5', '240ca1cc77ac9c65', '2de92c6f592b0275', '4a7484aa6ea6e483', '5cb0a9dcbd41fbd4', '76f988da831153b5', '983e5152ee66dfab', 'a831c66d2db43210', 'b00327c898fb213f', 'bf597fc7beef0ee4', 'c6e00bf33da88fc2', 'd5a79147930aa725', '06ca6351e003826f', '142929670a0e6e70', '27b70a8546d22ffc', '2e1b21385c26c926', '4d2c6dfc5ac42aed', '53380d139d95b3df', '650a73548baf63de', '766a0abb3c77b2a8', '81c2c92e47edaee6', '92722c851482353b', 'a2bfe8a14cf10364', 'a81a664bbc423001', 'c24b8b70d0f89791', 'c76c51a30654be30', 'd192e819d6ef5218', 'd69906245565a910', 'f40e35855771202a', '106aa07032bbd1b8', '19a4c116b8d2d0c8', '1e376c085141ab53', '2748774cdf8eeb99', '34b0bcb5e19b48a8', '391c0cb3c5c95a63', '4ed8aa4ae3418acb', '5b9cca4f7763e373', '682e6ff3d6b2b8a3', '748f82ee5defb2fc', '78a5636f43172f60', '84c87814a1f0ab72', '8cc702081a6439ec', '90befffa23631e28', 'a4506cebde82bde9', 'bef9a3f7b2c67915', 'c67178f2e372532b', 'ca273eceea26619c', 'd186b8c721c0c207', 'eada7dd6cde0eb1e', 'f57d4f7fee6ed178', '06f067aa72176fba', '0a637dc5a2c898a6', '113f9804bef90dae', '1b710b35131c471b', '28db77f523047d84', '32caab7b40c72493', '3c9ebe0a15c9bebc', '431d67c49c100d4c', '4cc5d4becb3e42b6', '597f299cfc657e2a', '5fcb6fab3ad6faec', '6c44198c4a475817' ]; for ($i = 0; $i < 80; $i++) { $k[$i] = new BigInteger($k[$i], 16); } } // Pre-processing $length = strlen($m); // to round to nearest 112 mod 128, we'll add 128 - (length + (128 - 112)) % 128 $m .= str_repeat(chr(0), 128 - (($length + 16) & 0x7F)); $m[$length] = chr(0x80); // we don't support hashing strings 512MB long $m .= pack('N4', 0, 0, 0, $length << 3); // Process the message in successive 1024-bit chunks $chunks = str_split($m, 128); foreach ($chunks as $chunk) { $w = []; for ($i = 0; $i < 16; $i++) { $temp = new BigInteger(Strings::shift($chunk, 8), 256); $temp->setPrecision(64); $w[] = $temp; } // Extend the sixteen 32-bit words into eighty 32-bit words for ($i = 16; $i < 80; $i++) { $temp = [ $w[$i - 15]->bitwise_rightRotate(1), $w[$i - 15]->bitwise_rightRotate(8), $w[$i - 15]->bitwise_rightShift(7) ]; $s0 = $temp[0]->bitwise_xor($temp[1]); $s0 = $s0->bitwise_xor($temp[2]); $temp = [ $w[$i - 2]->bitwise_rightRotate(19), $w[$i - 2]->bitwise_rightRotate(61), $w[$i - 2]->bitwise_rightShift(6) ]; $s1 = $temp[0]->bitwise_xor($temp[1]); $s1 = $s1->bitwise_xor($temp[2]); $w[$i] = clone $w[$i - 16]; $w[$i] = $w[$i]->add($s0); $w[$i] = $w[$i]->add($w[$i - 7]); $w[$i] = $w[$i]->add($s1); } // Initialize hash value for this chunk $a = clone $hash[0]; $b = clone $hash[1]; $c = clone $hash[2]; $d = clone $hash[3]; $e = clone $hash[4]; $f = clone $hash[5]; $g = clone $hash[6]; $h = clone $hash[7]; // Main loop for ($i = 0; $i < 80; $i++) { $temp = [ $a->bitwise_rightRotate(28), $a->bitwise_rightRotate(34), $a->bitwise_rightRotate(39) ]; $s0 = $temp[0]->bitwise_xor($temp[1]); $s0 = $s0->bitwise_xor($temp[2]); $temp = [ $a->bitwise_and($b), $a->bitwise_and($c), $b->bitwise_and($c) ]; $maj = $temp[0]->bitwise_xor($temp[1]); $maj = $maj->bitwise_xor($temp[2]); $t2 = $s0->add($maj); $temp = [ $e->bitwise_rightRotate(14), $e->bitwise_rightRotate(18), $e->bitwise_rightRotate(41) ]; $s1 = $temp[0]->bitwise_xor($temp[1]); $s1 = $s1->bitwise_xor($temp[2]); $temp = [ $e->bitwise_and($f), $g->bitwise_and($e->bitwise_not()) ]; $ch = $temp[0]->bitwise_xor($temp[1]); $t1 = $h->add($s1); $t1 = $t1->add($ch); $t1 = $t1->add($k[$i]); $t1 = $t1->add($w[$i]); $h = clone $g; $g = clone $f; $f = clone $e; $e = $d->add($t1); $d = clone $c; $c = clone $b; $b = clone $a; $a = $t1->add($t2); } // Add this chunk's hash to result so far $hash = [ $hash[0]->add($a), $hash[1]->add($b), $hash[2]->add($c), $hash[3]->add($d), $hash[4]->add($e), $hash[5]->add($f), $hash[6]->add($g), $hash[7]->add($h) ]; } // Produce the final hash value (big-endian) // (\phpseclib3\Crypt\Hash::hash() trims the output for hashes but not for HMACs. as such, we trim the output here) $temp = $hash[0]->toBytes() . $hash[1]->toBytes() . $hash[2]->toBytes() . $hash[3]->toBytes() . $hash[4]->toBytes() . $hash[5]->toBytes() . $hash[6]->toBytes() . $hash[7]->toBytes(); return $temp; } /** * __toString() magic method */ public function __toString() { return $this->getHash(); } }