芝麻web文件管理V1.00
编辑当前文件:/home/qrafawbu/ffmpeg/libavutil/mem.c
/* * default memory allocator for libavutil * Copyright (c) 2002 Fabrice Bellard * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * default memory allocator for libavutil */ #define _XOPEN_SOURCE 600 #include "config.h" #include
#include
#include
#include
#include
#if HAVE_MALLOC_H #include
#endif #include "attributes.h" #include "avassert.h" #include "dynarray.h" #include "error.h" #include "internal.h" #include "intreadwrite.h" #include "macros.h" #include "mem.h" #ifdef MALLOC_PREFIX #define malloc AV_JOIN(MALLOC_PREFIX, malloc) #define memalign AV_JOIN(MALLOC_PREFIX, memalign) #define posix_memalign AV_JOIN(MALLOC_PREFIX, posix_memalign) #define realloc AV_JOIN(MALLOC_PREFIX, realloc) #define free AV_JOIN(MALLOC_PREFIX, free) void *malloc(size_t size); void *memalign(size_t align, size_t size); int posix_memalign(void **ptr, size_t align, size_t size); void *realloc(void *ptr, size_t size); void free(void *ptr); #endif /* MALLOC_PREFIX */ #define ALIGN (HAVE_AVX512 ? 64 : (HAVE_AVX ? 32 : 16)) /* NOTE: if you want to override these functions with your own * implementations (not recommended) you have to link libav* as * dynamic libraries and remove -Wl,-Bsymbolic from the linker flags. * Note that this will cost performance. */ static atomic_size_t max_alloc_size = ATOMIC_VAR_INIT(INT_MAX); void av_max_alloc(size_t max){ atomic_store_explicit(&max_alloc_size, max, memory_order_relaxed); } static int size_mult(size_t a, size_t b, size_t *r) { size_t t; #if (!defined(__INTEL_COMPILER) && AV_GCC_VERSION_AT_LEAST(5,1)) || AV_HAS_BUILTIN(__builtin_mul_overflow) if (__builtin_mul_overflow(a, b, &t)) return AVERROR(EINVAL); #else t = a * b; /* Hack inspired from glibc: don't try the division if nelem and elsize * are both less than sqrt(SIZE_MAX). */ if ((a | b) >= ((size_t)1 << (sizeof(size_t) * 4)) && a && t / a != b) return AVERROR(EINVAL); #endif *r = t; return 0; } void *av_malloc(size_t size) { void *ptr = NULL; if (size > atomic_load_explicit(&max_alloc_size, memory_order_relaxed)) return NULL; #if HAVE_POSIX_MEMALIGN if (size) //OS X on SDK 10.6 has a broken posix_memalign implementation if (posix_memalign(&ptr, ALIGN, size)) ptr = NULL; #elif HAVE_ALIGNED_MALLOC ptr = _aligned_malloc(size, ALIGN); #elif HAVE_MEMALIGN #ifndef __DJGPP__ ptr = memalign(ALIGN, size); #else ptr = memalign(size, ALIGN); #endif /* Why 64? * Indeed, we should align it: * on 4 for 386 * on 16 for 486 * on 32 for 586, PPro - K6-III * on 64 for K7 (maybe for P3 too). * Because L1 and L2 caches are aligned on those values. * But I don't want to code such logic here! */ /* Why 32? * For AVX ASM. SSE / NEON needs only 16. * Why not larger? Because I did not see a difference in benchmarks ... */ /* benchmarks with P3 * memalign(64) + 1 3071, 3051, 3032 * memalign(64) + 2 3051, 3032, 3041 * memalign(64) + 4 2911, 2896, 2915 * memalign(64) + 8 2545, 2554, 2550 * memalign(64) + 16 2543, 2572, 2563 * memalign(64) + 32 2546, 2545, 2571 * memalign(64) + 64 2570, 2533, 2558 * * BTW, malloc seems to do 8-byte alignment by default here. */ #else ptr = malloc(size); #endif if(!ptr && !size) { size = 1; ptr= av_malloc(1); } #if CONFIG_MEMORY_POISONING if (ptr) memset(ptr, FF_MEMORY_POISON, size); #endif return ptr; } void *av_realloc(void *ptr, size_t size) { void *ret; if (size > atomic_load_explicit(&max_alloc_size, memory_order_relaxed)) return NULL; #if HAVE_ALIGNED_MALLOC ret = _aligned_realloc(ptr, size + !size, ALIGN); #else ret = realloc(ptr, size + !size); #endif #if CONFIG_MEMORY_POISONING if (ret && !ptr) memset(ret, FF_MEMORY_POISON, size); #endif return ret; } void *av_realloc_f(void *ptr, size_t nelem, size_t elsize) { size_t size; void *r; if (size_mult(elsize, nelem, &size)) { av_free(ptr); return NULL; } r = av_realloc(ptr, size); if (!r) av_free(ptr); return r; } int av_reallocp(void *ptr, size_t size) { void *val; if (!size) { av_freep(ptr); return 0; } memcpy(&val, ptr, sizeof(val)); val = av_realloc(val, size); if (!val) { av_freep(ptr); return AVERROR(ENOMEM); } memcpy(ptr, &val, sizeof(val)); return 0; } void *av_malloc_array(size_t nmemb, size_t size) { size_t result; if (size_mult(nmemb, size, &result) < 0) return NULL; return av_malloc(result); } #if FF_API_AV_MALLOCZ_ARRAY void *av_mallocz_array(size_t nmemb, size_t size) { size_t result; if (size_mult(nmemb, size, &result) < 0) return NULL; return av_mallocz(result); } #endif void *av_realloc_array(void *ptr, size_t nmemb, size_t size) { size_t result; if (size_mult(nmemb, size, &result) < 0) return NULL; return av_realloc(ptr, result); } int av_reallocp_array(void *ptr, size_t nmemb, size_t size) { void *val; memcpy(&val, ptr, sizeof(val)); val = av_realloc_f(val, nmemb, size); memcpy(ptr, &val, sizeof(val)); if (!val && nmemb && size) return AVERROR(ENOMEM); return 0; } void av_free(void *ptr) { #if HAVE_ALIGNED_MALLOC _aligned_free(ptr); #else free(ptr); #endif } void av_freep(void *arg) { void *val; memcpy(&val, arg, sizeof(val)); memcpy(arg, &(void *){ NULL }, sizeof(val)); av_free(val); } void *av_mallocz(size_t size) { void *ptr = av_malloc(size); if (ptr) memset(ptr, 0, size); return ptr; } void *av_calloc(size_t nmemb, size_t size) { size_t result; if (size_mult(nmemb, size, &result) < 0) return NULL; return av_mallocz(result); } char *av_strdup(const char *s) { char *ptr = NULL; if (s) { size_t len = strlen(s) + 1; ptr = av_realloc(NULL, len); if (ptr) memcpy(ptr, s, len); } return ptr; } char *av_strndup(const char *s, size_t len) { char *ret = NULL, *end; if (!s) return NULL; end = memchr(s, 0, len); if (end) len = end - s; ret = av_realloc(NULL, len + 1); if (!ret) return NULL; memcpy(ret, s, len); ret[len] = 0; return ret; } void *av_memdup(const void *p, size_t size) { void *ptr = NULL; if (p) { ptr = av_malloc(size); if (ptr) memcpy(ptr, p, size); } return ptr; } int av_dynarray_add_nofree(void *tab_ptr, int *nb_ptr, void *elem) { void **tab; memcpy(&tab, tab_ptr, sizeof(tab)); FF_DYNARRAY_ADD(INT_MAX, sizeof(*tab), tab, *nb_ptr, { tab[*nb_ptr] = elem; memcpy(tab_ptr, &tab, sizeof(tab)); }, { return AVERROR(ENOMEM); }); return 0; } void av_dynarray_add(void *tab_ptr, int *nb_ptr, void *elem) { void **tab; memcpy(&tab, tab_ptr, sizeof(tab)); FF_DYNARRAY_ADD(INT_MAX, sizeof(*tab), tab, *nb_ptr, { tab[*nb_ptr] = elem; memcpy(tab_ptr, &tab, sizeof(tab)); }, { *nb_ptr = 0; av_freep(tab_ptr); }); } void *av_dynarray2_add(void **tab_ptr, int *nb_ptr, size_t elem_size, const uint8_t *elem_data) { uint8_t *tab_elem_data = NULL; FF_DYNARRAY_ADD(INT_MAX, elem_size, *tab_ptr, *nb_ptr, { tab_elem_data = (uint8_t *)*tab_ptr + (*nb_ptr) * elem_size; if (elem_data) memcpy(tab_elem_data, elem_data, elem_size); else if (CONFIG_MEMORY_POISONING) memset(tab_elem_data, FF_MEMORY_POISON, elem_size); }, { av_freep(tab_ptr); *nb_ptr = 0; }); return tab_elem_data; } static void fill16(uint8_t *dst, int len) { uint32_t v = AV_RN16(dst - 2); v |= v << 16; while (len >= 4) { AV_WN32(dst, v); dst += 4; len -= 4; } while (len--) { *dst = dst[-2]; dst++; } } static void fill24(uint8_t *dst, int len) { #if HAVE_BIGENDIAN uint32_t v = AV_RB24(dst - 3); uint32_t a = v << 8 | v >> 16; uint32_t b = v << 16 | v >> 8; uint32_t c = v << 24 | v; #else uint32_t v = AV_RL24(dst - 3); uint32_t a = v | v << 24; uint32_t b = v >> 8 | v << 16; uint32_t c = v >> 16 | v << 8; #endif while (len >= 12) { AV_WN32(dst, a); AV_WN32(dst + 4, b); AV_WN32(dst + 8, c); dst += 12; len -= 12; } if (len >= 4) { AV_WN32(dst, a); dst += 4; len -= 4; } if (len >= 4) { AV_WN32(dst, b); dst += 4; len -= 4; } while (len--) { *dst = dst[-3]; dst++; } } static void fill32(uint8_t *dst, int len) { uint32_t v = AV_RN32(dst - 4); #if HAVE_FAST_64BIT uint64_t v2= v + ((uint64_t)v<<32); while (len >= 32) { AV_WN64(dst , v2); AV_WN64(dst+ 8, v2); AV_WN64(dst+16, v2); AV_WN64(dst+24, v2); dst += 32; len -= 32; } #endif while (len >= 4) { AV_WN32(dst, v); dst += 4; len -= 4; } while (len--) { *dst = dst[-4]; dst++; } } void av_memcpy_backptr(uint8_t *dst, int back, int cnt) { const uint8_t *src = &dst[-back]; if (!back) return; if (back == 1) { memset(dst, *src, cnt); } else if (back == 2) { fill16(dst, cnt); } else if (back == 3) { fill24(dst, cnt); } else if (back == 4) { fill32(dst, cnt); } else { if (cnt >= 16) { int blocklen = back; while (cnt > blocklen) { memcpy(dst, src, blocklen); dst += blocklen; cnt -= blocklen; blocklen <<= 1; } memcpy(dst, src, cnt); return; } if (cnt >= 8) { AV_COPY32U(dst, src); AV_COPY32U(dst + 4, src + 4); src += 8; dst += 8; cnt -= 8; } if (cnt >= 4) { AV_COPY32U(dst, src); src += 4; dst += 4; cnt -= 4; } if (cnt >= 2) { AV_COPY16U(dst, src); src += 2; dst += 2; cnt -= 2; } if (cnt) *dst = *src; } } void *av_fast_realloc(void *ptr, unsigned int *size, size_t min_size) { size_t max_size; if (min_size <= *size) return ptr; max_size = atomic_load_explicit(&max_alloc_size, memory_order_relaxed); /* *size is an unsigned, so the real maximum is <= UINT_MAX. */ max_size = FFMIN(max_size, UINT_MAX); if (min_size > max_size) { *size = 0; return NULL; } min_size = FFMIN(max_size, FFMAX(min_size + min_size / 16 + 32, min_size)); ptr = av_realloc(ptr, min_size); /* we could set this to the unmodified min_size but this is safer * if the user lost the ptr and uses NULL now */ if (!ptr) min_size = 0; *size = min_size; return ptr; } static inline void fast_malloc(void *ptr, unsigned int *size, size_t min_size, int zero_realloc) { size_t max_size; void *val; memcpy(&val, ptr, sizeof(val)); if (min_size <= *size) { av_assert0(val || !min_size); return; } max_size = atomic_load_explicit(&max_alloc_size, memory_order_relaxed); /* *size is an unsigned, so the real maximum is <= UINT_MAX. */ max_size = FFMIN(max_size, UINT_MAX); if (min_size > max_size) { av_freep(ptr); *size = 0; return; } min_size = FFMIN(max_size, FFMAX(min_size + min_size / 16 + 32, min_size)); av_freep(ptr); val = zero_realloc ? av_mallocz(min_size) : av_malloc(min_size); memcpy(ptr, &val, sizeof(val)); if (!val) min_size = 0; *size = min_size; return; } void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size) { fast_malloc(ptr, size, min_size, 0); } void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size) { fast_malloc(ptr, size, min_size, 1); } int av_size_mult(size_t a, size_t b, size_t *r) { return size_mult(a, b, r); }