芝麻web文件管理V1.00
编辑当前文件:/home/qrafawbu/ffmpeg/libavcodec/vp9recon.c
/* * VP9 compatible video decoder * * Copyright (C) 2013 Ronald S. Bultje
* Copyright (C) 2013 Clément Bœsch
* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/avassert.h" #include "libavutil/mem_internal.h" #include "threadframe.h" #include "videodsp.h" #include "vp9data.h" #include "vp9dec.h" static av_always_inline int check_intra_mode(VP9TileData *td, int mode, uint8_t **a, uint8_t *dst_edge, ptrdiff_t stride_edge, uint8_t *dst_inner, ptrdiff_t stride_inner, uint8_t *l, int col, int x, int w, int row, int y, enum TxfmMode tx, int p, int ss_h, int ss_v, int bytesperpixel) { const VP9Context *s = td->s; int have_top = row > 0 || y > 0; int have_left = col > td->tile_col_start || x > 0; int have_right = x < w - 1; int bpp = s->s.h.bpp; static const uint8_t mode_conv[10][2 /* have_left */][2 /* have_top */] = { [VERT_PRED] = { { DC_127_PRED, VERT_PRED }, { DC_127_PRED, VERT_PRED } }, [HOR_PRED] = { { DC_129_PRED, DC_129_PRED }, { HOR_PRED, HOR_PRED } }, [DC_PRED] = { { DC_128_PRED, TOP_DC_PRED }, { LEFT_DC_PRED, DC_PRED } }, [DIAG_DOWN_LEFT_PRED] = { { DC_127_PRED, DIAG_DOWN_LEFT_PRED }, { DC_127_PRED, DIAG_DOWN_LEFT_PRED } }, [DIAG_DOWN_RIGHT_PRED] = { { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED }, { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED } }, [VERT_RIGHT_PRED] = { { VERT_RIGHT_PRED, VERT_RIGHT_PRED }, { VERT_RIGHT_PRED, VERT_RIGHT_PRED } }, [HOR_DOWN_PRED] = { { HOR_DOWN_PRED, HOR_DOWN_PRED }, { HOR_DOWN_PRED, HOR_DOWN_PRED } }, [VERT_LEFT_PRED] = { { DC_127_PRED, VERT_LEFT_PRED }, { DC_127_PRED, VERT_LEFT_PRED } }, [HOR_UP_PRED] = { { DC_129_PRED, DC_129_PRED }, { HOR_UP_PRED, HOR_UP_PRED } }, [TM_VP8_PRED] = { { DC_129_PRED, VERT_PRED }, { HOR_PRED, TM_VP8_PRED } }, }; static const struct { uint8_t needs_left:1; uint8_t needs_top:1; uint8_t needs_topleft:1; uint8_t needs_topright:1; uint8_t invert_left:1; } edges[N_INTRA_PRED_MODES] = { [VERT_PRED] = { .needs_top = 1 }, [HOR_PRED] = { .needs_left = 1 }, [DC_PRED] = { .needs_top = 1, .needs_left = 1 }, [DIAG_DOWN_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 }, [DIAG_DOWN_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 }, [VERT_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 }, [HOR_DOWN_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 }, [VERT_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 }, [HOR_UP_PRED] = { .needs_left = 1, .invert_left = 1 }, [TM_VP8_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 }, [LEFT_DC_PRED] = { .needs_left = 1 }, [TOP_DC_PRED] = { .needs_top = 1 }, [DC_128_PRED] = { 0 }, [DC_127_PRED] = { 0 }, [DC_129_PRED] = { 0 } }; av_assert2(mode >= 0 && mode < 10); mode = mode_conv[mode][have_left][have_top]; if (edges[mode].needs_top) { uint8_t *top, *topleft; int n_px_need = 4 << tx, n_px_have = (((s->cols - col) << !ss_h) - x) * 4; int n_px_need_tr = 0; if (tx == TX_4X4 && edges[mode].needs_topright && have_right) n_px_need_tr = 4; // if top of sb64-row, use s->intra_pred_data[] instead of // dst[-stride] for intra prediction (it contains pre- instead of // post-loopfilter data) if (have_top) { top = !(row & 7) && !y ? s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel : y == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner]; if (have_left) topleft = !(row & 7) && !y ? s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel : y == 0 || x == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner]; } if (have_top && (!edges[mode].needs_topleft || (have_left && top == topleft)) && (tx != TX_4X4 || !edges[mode].needs_topright || have_right) && n_px_need + n_px_need_tr <= n_px_have) { *a = top; } else { if (have_top) { if (n_px_need <= n_px_have) { memcpy(*a, top, n_px_need * bytesperpixel); } else { #define memset_bpp(c, i1, v, i2, num) do { \ if (bytesperpixel == 1) { \ memset(&(c)[(i1)], (v)[(i2)], (num)); \ } else { \ int n, val = AV_RN16A(&(v)[(i2) * 2]); \ for (n = 0; n < (num); n++) { \ AV_WN16A(&(c)[((i1) + n) * 2], val); \ } \ } \ } while (0) memcpy(*a, top, n_px_have * bytesperpixel); memset_bpp(*a, n_px_have, (*a), n_px_have - 1, n_px_need - n_px_have); } } else { #define memset_val(c, val, num) do { \ if (bytesperpixel == 1) { \ memset((c), (val), (num)); \ } else { \ int n; \ for (n = 0; n < (num); n++) { \ AV_WN16A(&(c)[n * 2], (val)); \ } \ } \ } while (0) memset_val(*a, (128 << (bpp - 8)) - 1, n_px_need); } if (edges[mode].needs_topleft) { if (have_left && have_top) { #define assign_bpp(c, i1, v, i2) do { \ if (bytesperpixel == 1) { \ (c)[(i1)] = (v)[(i2)]; \ } else { \ AV_COPY16(&(c)[(i1) * 2], &(v)[(i2) * 2]); \ } \ } while (0) assign_bpp(*a, -1, topleft, -1); } else { #define assign_val(c, i, v) do { \ if (bytesperpixel == 1) { \ (c)[(i)] = (v); \ } else { \ AV_WN16A(&(c)[(i) * 2], (v)); \ } \ } while (0) assign_val((*a), -1, (128 << (bpp - 8)) + (have_top ? +1 : -1)); } } if (tx == TX_4X4 && edges[mode].needs_topright) { if (have_top && have_right && n_px_need + n_px_need_tr <= n_px_have) { memcpy(&(*a)[4 * bytesperpixel], &top[4 * bytesperpixel], 4 * bytesperpixel); } else { memset_bpp(*a, 4, *a, 3, 4); } } } } if (edges[mode].needs_left) { if (have_left) { int n_px_need = 4 << tx, i, n_px_have = (((s->rows - row) << !ss_v) - y) * 4; uint8_t *dst = x == 0 ? dst_edge : dst_inner; ptrdiff_t stride = x == 0 ? stride_edge : stride_inner; if (edges[mode].invert_left) { if (n_px_need <= n_px_have) { for (i = 0; i < n_px_need; i++) assign_bpp(l, i, &dst[i * stride], -1); } else { for (i = 0; i < n_px_have; i++) assign_bpp(l, i, &dst[i * stride], -1); memset_bpp(l, n_px_have, l, n_px_have - 1, n_px_need - n_px_have); } } else { if (n_px_need <= n_px_have) { for (i = 0; i < n_px_need; i++) assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1); } else { for (i = 0; i < n_px_have; i++) assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1); memset_bpp(l, 0, l, n_px_need - n_px_have, n_px_need - n_px_have); } } } else { memset_val(l, (128 << (bpp - 8)) + 1, 4 << tx); } } return mode; } static av_always_inline void intra_recon(VP9TileData *td, ptrdiff_t y_off, ptrdiff_t uv_off, int bytesperpixel) { const VP9Context *s = td->s; VP9Block *b = td->b; int row = td->row, col = td->col; int w4 = ff_vp9_bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n; int h4 = ff_vp9_bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2); int end_x = FFMIN(2 * (s->cols - col), w4); int end_y = FFMIN(2 * (s->rows - row), h4); int tx = 4 * s->s.h.lossless + b->tx, uvtx = b->uvtx + 4 * s->s.h.lossless; int uvstep1d = 1 << b->uvtx, p; uint8_t *dst = td->dst[0], *dst_r = s->s.frames[CUR_FRAME].tf.f->data[0] + y_off; LOCAL_ALIGNED_32(uint8_t, a_buf, [96]); LOCAL_ALIGNED_32(uint8_t, l, [64]); for (n = 0, y = 0; y < end_y; y += step1d) { uint8_t *ptr = dst, *ptr_r = dst_r; for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d * bytesperpixel, ptr_r += 4 * step1d * bytesperpixel, n += step) { int mode = b->mode[b->bs > BS_8x8 && b->tx == TX_4X4 ? y * 2 + x : 0]; uint8_t *a = &a_buf[32]; enum TxfmType txtp = ff_vp9_intra_txfm_type[mode]; int eob = b->skip ? 0 : b->tx > TX_8X8 ? AV_RN16A(&td->eob[n]) : td->eob[n]; mode = check_intra_mode(td, mode, &a, ptr_r, s->s.frames[CUR_FRAME].tf.f->linesize[0], ptr, td->y_stride, l, col, x, w4, row, y, b->tx, 0, 0, 0, bytesperpixel); s->dsp.intra_pred[b->tx][mode](ptr, td->y_stride, l, a); if (eob) s->dsp.itxfm_add[tx][txtp](ptr, td->y_stride, td->block + 16 * n * bytesperpixel, eob); } dst_r += 4 * step1d * s->s.frames[CUR_FRAME].tf.f->linesize[0]; dst += 4 * step1d * td->y_stride; } // U/V w4 >>= s->ss_h; end_x >>= s->ss_h; end_y >>= s->ss_v; step = 1 << (b->uvtx * 2); for (p = 0; p < 2; p++) { dst = td->dst[1 + p]; dst_r = s->s.frames[CUR_FRAME].tf.f->data[1 + p] + uv_off; for (n = 0, y = 0; y < end_y; y += uvstep1d) { uint8_t *ptr = dst, *ptr_r = dst_r; for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d * bytesperpixel, ptr_r += 4 * uvstep1d * bytesperpixel, n += step) { int mode = b->uvmode; uint8_t *a = &a_buf[32]; int eob = b->skip ? 0 : b->uvtx > TX_8X8 ? AV_RN16A(&td->uveob[p][n]) : td->uveob[p][n]; mode = check_intra_mode(td, mode, &a, ptr_r, s->s.frames[CUR_FRAME].tf.f->linesize[1], ptr, td->uv_stride, l, col, x, w4, row, y, b->uvtx, p + 1, s->ss_h, s->ss_v, bytesperpixel); s->dsp.intra_pred[b->uvtx][mode](ptr, td->uv_stride, l, a); if (eob) s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, td->uv_stride, td->uvblock[p] + 16 * n * bytesperpixel, eob); } dst_r += 4 * uvstep1d * s->s.frames[CUR_FRAME].tf.f->linesize[1]; dst += 4 * uvstep1d * td->uv_stride; } } } void ff_vp9_intra_recon_8bpp(VP9TileData *td, ptrdiff_t y_off, ptrdiff_t uv_off) { intra_recon(td, y_off, uv_off, 1); } void ff_vp9_intra_recon_16bpp(VP9TileData *td, ptrdiff_t y_off, ptrdiff_t uv_off) { intra_recon(td, y_off, uv_off, 2); } static av_always_inline void mc_luma_unscaled(VP9TileData *td, const vp9_mc_func (*mc)[2], uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *ref, ptrdiff_t ref_stride, const ThreadFrame *ref_frame, ptrdiff_t y, ptrdiff_t x, const VP9mv *mv, int bw, int bh, int w, int h, int bytesperpixel) { const VP9Context *s = td->s; int mx = mv->x, my = mv->y, th; y += my >> 3; x += mx >> 3; ref += y * ref_stride + x * bytesperpixel; mx &= 7; my &= 7; // FIXME bilinear filter only needs 0/1 pixels, not 3/4 // we use +7 because the last 7 pixels of each sbrow can be changed in // the longest loopfilter of the next sbrow th = (y + bh + 4 * !!my + 7) >> 6; ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0); // The arm/aarch64 _hv filters read one more row than what actually is // needed, so switch to emulated edge one pixel sooner vertically // (!!my * 5) than horizontally (!!mx * 4). if (x < !!mx * 3 || y < !!my * 3 || x + !!mx * 4 > w - bw || y + !!my * 5 > h - bh) { s->vdsp.emulated_edge_mc(td->edge_emu_buffer, ref - !!my * 3 * ref_stride - !!mx * 3 * bytesperpixel, 160, ref_stride, bw + !!mx * 7, bh + !!my * 7, x - !!mx * 3, y - !!my * 3, w, h); ref = td->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel; ref_stride = 160; } mc[!!mx][!!my](dst, dst_stride, ref, ref_stride, bh, mx << 1, my << 1); } static av_always_inline void mc_chroma_unscaled(VP9TileData *td, const vp9_mc_func (*mc)[2], uint8_t *dst_u, uint8_t *dst_v, ptrdiff_t dst_stride, const uint8_t *ref_u, ptrdiff_t src_stride_u, const uint8_t *ref_v, ptrdiff_t src_stride_v, const ThreadFrame *ref_frame, ptrdiff_t y, ptrdiff_t x, const VP9mv *mv, int bw, int bh, int w, int h, int bytesperpixel) { const VP9Context *s = td->s; int mx = mv->x * (1 << !s->ss_h), my = mv->y * (1 << !s->ss_v), th; y += my >> 4; x += mx >> 4; ref_u += y * src_stride_u + x * bytesperpixel; ref_v += y * src_stride_v + x * bytesperpixel; mx &= 15; my &= 15; // FIXME bilinear filter only needs 0/1 pixels, not 3/4 // we use +7 because the last 7 pixels of each sbrow can be changed in // the longest loopfilter of the next sbrow th = (y + bh + 4 * !!my + 7) >> (6 - s->ss_v); ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0); // The arm/aarch64 _hv filters read one more row than what actually is // needed, so switch to emulated edge one pixel sooner vertically // (!!my * 5) than horizontally (!!mx * 4). if (x < !!mx * 3 || y < !!my * 3 || x + !!mx * 4 > w - bw || y + !!my * 5 > h - bh) { s->vdsp.emulated_edge_mc(td->edge_emu_buffer, ref_u - !!my * 3 * src_stride_u - !!mx * 3 * bytesperpixel, 160, src_stride_u, bw + !!mx * 7, bh + !!my * 7, x - !!mx * 3, y - !!my * 3, w, h); ref_u = td->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel; mc[!!mx][!!my](dst_u, dst_stride, ref_u, 160, bh, mx, my); s->vdsp.emulated_edge_mc(td->edge_emu_buffer, ref_v - !!my * 3 * src_stride_v - !!mx * 3 * bytesperpixel, 160, src_stride_v, bw + !!mx * 7, bh + !!my * 7, x - !!mx * 3, y - !!my * 3, w, h); ref_v = td->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel; mc[!!mx][!!my](dst_v, dst_stride, ref_v, 160, bh, mx, my); } else { mc[!!mx][!!my](dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my); mc[!!mx][!!my](dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my); } } #define mc_luma_dir(td, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, \ px, py, pw, ph, bw, bh, w, h, i) \ mc_luma_unscaled(td, s->dsp.mc, dst, dst_ls, src, src_ls, tref, row, col, \ mv, bw, bh, w, h, bytesperpixel) #define mc_chroma_dir(td, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \ row, col, mv, px, py, pw, ph, bw, bh, w, h, i) \ mc_chroma_unscaled(td, s->dsp.mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \ row, col, mv, bw, bh, w, h, bytesperpixel) #define SCALED 0 #define FN(x) x##_8bpp #define BYTES_PER_PIXEL 1 #include "vp9_mc_template.c" #undef FN #undef BYTES_PER_PIXEL #define FN(x) x##_16bpp #define BYTES_PER_PIXEL 2 #include "vp9_mc_template.c" #undef mc_luma_dir #undef mc_chroma_dir #undef FN #undef BYTES_PER_PIXEL #undef SCALED static av_always_inline void mc_luma_scaled(VP9TileData *td, vp9_scaled_mc_func smc, const vp9_mc_func (*mc)[2], uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *ref, ptrdiff_t ref_stride, const ThreadFrame *ref_frame, ptrdiff_t y, ptrdiff_t x, const VP9mv *in_mv, int px, int py, int pw, int ph, int bw, int bh, int w, int h, int bytesperpixel, const uint16_t *scale, const uint8_t *step) { const VP9Context *s = td->s; if (s->s.frames[CUR_FRAME].tf.f->width == ref_frame->f->width && s->s.frames[CUR_FRAME].tf.f->height == ref_frame->f->height) { mc_luma_unscaled(td, mc, dst, dst_stride, ref, ref_stride, ref_frame, y, x, in_mv, bw, bh, w, h, bytesperpixel); } else { #define scale_mv(n, dim) (((int64_t)(n) * scale[dim]) >> 14) int mx, my; int refbw_m1, refbh_m1; int th; VP9mv mv; mv.x = av_clip(in_mv->x, -(x + pw - px + 4) * 8, (s->cols * 8 - x + px + 3) * 8); mv.y = av_clip(in_mv->y, -(y + ph - py + 4) * 8, (s->rows * 8 - y + py + 3) * 8); // BUG libvpx seems to scale the two components separately. This introduces // rounding errors but we have to reproduce them to be exactly compatible // with the output from libvpx... mx = scale_mv(mv.x * 2, 0) + scale_mv(x * 16, 0); my = scale_mv(mv.y * 2, 1) + scale_mv(y * 16, 1); y = my >> 4; x = mx >> 4; ref += y * ref_stride + x * bytesperpixel; mx &= 15; my &= 15; refbw_m1 = ((bw - 1) * step[0] + mx) >> 4; refbh_m1 = ((bh - 1) * step[1] + my) >> 4; // FIXME bilinear filter only needs 0/1 pixels, not 3/4 // we use +7 because the last 7 pixels of each sbrow can be changed in // the longest loopfilter of the next sbrow th = (y + refbh_m1 + 4 + 7) >> 6; ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0); // The arm/aarch64 _hv filters read one more row than what actually is // needed, so switch to emulated edge one pixel sooner vertically // (y + 5 >= h - refbh_m1) than horizontally (x + 4 >= w - refbw_m1). if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 5 >= h - refbh_m1) { s->vdsp.emulated_edge_mc(td->edge_emu_buffer, ref - 3 * ref_stride - 3 * bytesperpixel, 288, ref_stride, refbw_m1 + 8, refbh_m1 + 8, x - 3, y - 3, w, h); ref = td->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel; ref_stride = 288; } smc(dst, dst_stride, ref, ref_stride, bh, mx, my, step[0], step[1]); } } static av_always_inline void mc_chroma_scaled(VP9TileData *td, vp9_scaled_mc_func smc, const vp9_mc_func (*mc)[2], uint8_t *dst_u, uint8_t *dst_v, ptrdiff_t dst_stride, const uint8_t *ref_u, ptrdiff_t src_stride_u, const uint8_t *ref_v, ptrdiff_t src_stride_v, const ThreadFrame *ref_frame, ptrdiff_t y, ptrdiff_t x, const VP9mv *in_mv, int px, int py, int pw, int ph, int bw, int bh, int w, int h, int bytesperpixel, const uint16_t *scale, const uint8_t *step) { const VP9Context *s = td->s; if (s->s.frames[CUR_FRAME].tf.f->width == ref_frame->f->width && s->s.frames[CUR_FRAME].tf.f->height == ref_frame->f->height) { mc_chroma_unscaled(td, mc, dst_u, dst_v, dst_stride, ref_u, src_stride_u, ref_v, src_stride_v, ref_frame, y, x, in_mv, bw, bh, w, h, bytesperpixel); } else { int mx, my; int refbw_m1, refbh_m1; int th; VP9mv mv; if (s->ss_h) { // BUG https://code.google.com/p/webm/issues/detail?id=820 mv.x = av_clip(in_mv->x, -(x + pw - px + 4) * 16, (s->cols * 4 - x + px + 3) * 16); mx = scale_mv(mv.x, 0) + (scale_mv(x * 16, 0) & ~15) + (scale_mv(x * 32, 0) & 15); } else { mv.x = av_clip(in_mv->x, -(x + pw - px + 4) * 8, (s->cols * 8 - x + px + 3) * 8); mx = scale_mv(mv.x * 2, 0) + scale_mv(x * 16, 0); } if (s->ss_v) { // BUG https://code.google.com/p/webm/issues/detail?id=820 mv.y = av_clip(in_mv->y, -(y + ph - py + 4) * 16, (s->rows * 4 - y + py + 3) * 16); my = scale_mv(mv.y, 1) + (scale_mv(y * 16, 1) & ~15) + (scale_mv(y * 32, 1) & 15); } else { mv.y = av_clip(in_mv->y, -(y + ph - py + 4) * 8, (s->rows * 8 - y + py + 3) * 8); my = scale_mv(mv.y * 2, 1) + scale_mv(y * 16, 1); } #undef scale_mv y = my >> 4; x = mx >> 4; ref_u += y * src_stride_u + x * bytesperpixel; ref_v += y * src_stride_v + x * bytesperpixel; mx &= 15; my &= 15; refbw_m1 = ((bw - 1) * step[0] + mx) >> 4; refbh_m1 = ((bh - 1) * step[1] + my) >> 4; // FIXME bilinear filter only needs 0/1 pixels, not 3/4 // we use +7 because the last 7 pixels of each sbrow can be changed in // the longest loopfilter of the next sbrow th = (y + refbh_m1 + 4 + 7) >> (6 - s->ss_v); ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0); // The arm/aarch64 _hv filters read one more row than what actually is // needed, so switch to emulated edge one pixel sooner vertically // (y + 5 >= h - refbh_m1) than horizontally (x + 4 >= w - refbw_m1). if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 5 >= h - refbh_m1) { s->vdsp.emulated_edge_mc(td->edge_emu_buffer, ref_u - 3 * src_stride_u - 3 * bytesperpixel, 288, src_stride_u, refbw_m1 + 8, refbh_m1 + 8, x - 3, y - 3, w, h); ref_u = td->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel; smc(dst_u, dst_stride, ref_u, 288, bh, mx, my, step[0], step[1]); s->vdsp.emulated_edge_mc(td->edge_emu_buffer, ref_v - 3 * src_stride_v - 3 * bytesperpixel, 288, src_stride_v, refbw_m1 + 8, refbh_m1 + 8, x - 3, y - 3, w, h); ref_v = td->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel; smc(dst_v, dst_stride, ref_v, 288, bh, mx, my, step[0], step[1]); } else { smc(dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my, step[0], step[1]); smc(dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my, step[0], step[1]); } } } #define mc_luma_dir(td, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, \ px, py, pw, ph, bw, bh, w, h, i) \ mc_luma_scaled(td, s->dsp.s##mc, s->dsp.mc, dst, dst_ls, src, src_ls, tref, row, col, \ mv, px, py, pw, ph, bw, bh, w, h, bytesperpixel, \ s->mvscale[b->ref[i]], s->mvstep[b->ref[i]]) #define mc_chroma_dir(td, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \ row, col, mv, px, py, pw, ph, bw, bh, w, h, i) \ mc_chroma_scaled(td, s->dsp.s##mc, s->dsp.mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \ row, col, mv, px, py, pw, ph, bw, bh, w, h, bytesperpixel, \ s->mvscale[b->ref[i]], s->mvstep[b->ref[i]]) #define SCALED 1 #define FN(x) x##_scaled_8bpp #define BYTES_PER_PIXEL 1 #include "vp9_mc_template.c" #undef FN #undef BYTES_PER_PIXEL #define FN(x) x##_scaled_16bpp #define BYTES_PER_PIXEL 2 #include "vp9_mc_template.c" #undef mc_luma_dir #undef mc_chroma_dir #undef FN #undef BYTES_PER_PIXEL #undef SCALED static av_always_inline void inter_recon(VP9TileData *td, int bytesperpixel) { const VP9Context *s = td->s; VP9Block *b = td->b; int row = td->row, col = td->col; if (s->mvscale[b->ref[0]][0] == REF_INVALID_SCALE || (b->comp && s->mvscale[b->ref[1]][0] == REF_INVALID_SCALE)) { if (!s->td->error_info) { s->td->error_info = AVERROR_INVALIDDATA; av_log(NULL, AV_LOG_ERROR, "Bitstream not supported, " "reference frame has invalid dimensions\n"); } return; } if (s->mvscale[b->ref[0]][0] || (b->comp && s->mvscale[b->ref[1]][0])) { if (bytesperpixel == 1) { inter_pred_scaled_8bpp(td); } else { inter_pred_scaled_16bpp(td); } } else { if (bytesperpixel == 1) { inter_pred_8bpp(td); } else { inter_pred_16bpp(td); } } if (!b->skip) { /* mostly copied intra_recon() */ int w4 = ff_vp9_bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n; int h4 = ff_vp9_bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2); int end_x = FFMIN(2 * (s->cols - col), w4); int end_y = FFMIN(2 * (s->rows - row), h4); int tx = 4 * s->s.h.lossless + b->tx, uvtx = b->uvtx + 4 * s->s.h.lossless; int uvstep1d = 1 << b->uvtx, p; uint8_t *dst = td->dst[0]; // y itxfm add for (n = 0, y = 0; y < end_y; y += step1d) { uint8_t *ptr = dst; for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d * bytesperpixel, n += step) { int eob = b->tx > TX_8X8 ? AV_RN16A(&td->eob[n]) : td->eob[n]; if (eob) s->dsp.itxfm_add[tx][DCT_DCT](ptr, td->y_stride, td->block + 16 * n * bytesperpixel, eob); } dst += 4 * td->y_stride * step1d; } // uv itxfm add end_x >>= s->ss_h; end_y >>= s->ss_v; step = 1 << (b->uvtx * 2); for (p = 0; p < 2; p++) { dst = td->dst[p + 1]; for (n = 0, y = 0; y < end_y; y += uvstep1d) { uint8_t *ptr = dst; for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d * bytesperpixel, n += step) { int eob = b->uvtx > TX_8X8 ? AV_RN16A(&td->uveob[p][n]) : td->uveob[p][n]; if (eob) s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, td->uv_stride, td->uvblock[p] + 16 * n * bytesperpixel, eob); } dst += 4 * uvstep1d * td->uv_stride; } } } } void ff_vp9_inter_recon_8bpp(VP9TileData *td) { inter_recon(td, 1); } void ff_vp9_inter_recon_16bpp(VP9TileData *td) { inter_recon(td, 2); }