芝麻web文件管理V1.00
编辑当前文件:/home/qrafawbu/ffmpeg/libavcodec/vp8.c
/* * VP7/VP8 compatible video decoder * * Copyright (C) 2010 David Conrad * Copyright (C) 2010 Ronald S. Bultje * Copyright (C) 2010 Fiona Glaser * Copyright (C) 2012 Daniel Kang * Copyright (C) 2014 Peter Ross * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config_components.h" #include "libavutil/mem_internal.h" #include "avcodec.h" #include "codec_internal.h" #include "decode.h" #include "hwconfig.h" #include "mathops.h" #include "thread.h" #include "threadframe.h" #include "vp8.h" #include "vp89_rac.h" #include "vp8data.h" #include "vpx_rac.h" #if ARCH_ARM # include "arm/vp8.h" #endif // fixme: add 1 bit to all the calls to this? static int vp8_rac_get_sint(VPXRangeCoder *c, int bits) { int v; if (!vp89_rac_get(c)) return 0; v = vp89_rac_get_uint(c, bits); if (vp89_rac_get(c)) v = -v; return v; } static int vp8_rac_get_nn(VPXRangeCoder *c) { int v = vp89_rac_get_uint(c, 7) << 1; return v + !v; } // DCTextra static int vp8_rac_get_coeff(VPXRangeCoder *c, const uint8_t *prob) { int v = 0; do { v = (v<<1) + vpx_rac_get_prob(c, *prob++); } while (*prob); return v; } static void free_buffers(VP8Context *s) { int i; if (s->thread_data) for (i = 0; i < MAX_THREADS; i++) { #if HAVE_THREADS pthread_cond_destroy(&s->thread_data[i].cond); pthread_mutex_destroy(&s->thread_data[i].lock); #endif av_freep(&s->thread_data[i].filter_strength); } av_freep(&s->thread_data); av_freep(&s->macroblocks_base); av_freep(&s->intra4x4_pred_mode_top); av_freep(&s->top_nnz); av_freep(&s->top_border); s->macroblocks = NULL; } static int vp8_alloc_frame(VP8Context *s, VP8Frame *f, int ref) { int ret; if ((ret = ff_thread_get_ext_buffer(s->avctx, &f->tf, ref ? AV_GET_BUFFER_FLAG_REF : 0)) < 0) return ret; if (!(f->seg_map = av_buffer_allocz(s->mb_width * s->mb_height))) goto fail; if (s->avctx->hwaccel) { const AVHWAccel *hwaccel = s->avctx->hwaccel; if (hwaccel->frame_priv_data_size) { f->hwaccel_priv_buf = av_buffer_allocz(hwaccel->frame_priv_data_size); if (!f->hwaccel_priv_buf) goto fail; f->hwaccel_picture_private = f->hwaccel_priv_buf->data; } } return 0; fail: av_buffer_unref(&f->seg_map); ff_thread_release_ext_buffer(s->avctx, &f->tf); return AVERROR(ENOMEM); } static void vp8_release_frame(VP8Context *s, VP8Frame *f) { av_buffer_unref(&f->seg_map); av_buffer_unref(&f->hwaccel_priv_buf); f->hwaccel_picture_private = NULL; ff_thread_release_ext_buffer(s->avctx, &f->tf); } #if CONFIG_VP8_DECODER static int vp8_ref_frame(VP8Context *s, VP8Frame *dst, const VP8Frame *src) { int ret; vp8_release_frame(s, dst); if ((ret = ff_thread_ref_frame(&dst->tf, &src->tf)) < 0) return ret; if (src->seg_map && !(dst->seg_map = av_buffer_ref(src->seg_map))) { vp8_release_frame(s, dst); return AVERROR(ENOMEM); } if (src->hwaccel_picture_private) { dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf); if (!dst->hwaccel_priv_buf) return AVERROR(ENOMEM); dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data; } return 0; } #endif /* CONFIG_VP8_DECODER */ static void vp8_decode_flush_impl(AVCodecContext *avctx, int free_mem) { VP8Context *s = avctx->priv_data; int i; for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++) vp8_release_frame(s, &s->frames[i]); memset(s->framep, 0, sizeof(s->framep)); if (free_mem) free_buffers(s); } static void vp8_decode_flush(AVCodecContext *avctx) { vp8_decode_flush_impl(avctx, 0); } static VP8Frame *vp8_find_free_buffer(VP8Context *s) { VP8Frame *frame = NULL; int i; // find a free buffer for (i = 0; i < 5; i++) if (&s->frames[i] != s->framep[VP8_FRAME_CURRENT] && &s->frames[i] != s->framep[VP8_FRAME_PREVIOUS] && &s->frames[i] != s->framep[VP8_FRAME_GOLDEN] && &s->frames[i] != s->framep[VP8_FRAME_ALTREF]) { frame = &s->frames[i]; break; } if (i == 5) { av_log(s->avctx, AV_LOG_FATAL, "Ran out of free frames!\n"); abort(); } if (frame->tf.f->buf[0]) vp8_release_frame(s, frame); return frame; } static enum AVPixelFormat get_pixel_format(VP8Context *s) { enum AVPixelFormat pix_fmts[] = { #if CONFIG_VP8_VAAPI_HWACCEL AV_PIX_FMT_VAAPI, #endif #if CONFIG_VP8_NVDEC_HWACCEL AV_PIX_FMT_CUDA, #endif AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, }; return ff_get_format(s->avctx, pix_fmts); } static av_always_inline int update_dimensions(VP8Context *s, int width, int height, int is_vp7) { AVCodecContext *avctx = s->avctx; int i, ret, dim_reset = 0; if (width != s->avctx->width || ((width+15)/16 != s->mb_width || (height+15)/16 != s->mb_height) && s->macroblocks_base || height != s->avctx->height) { vp8_decode_flush_impl(s->avctx, 1); ret = ff_set_dimensions(s->avctx, width, height); if (ret < 0) return ret; dim_reset = (s->macroblocks_base != NULL); } if ((s->pix_fmt == AV_PIX_FMT_NONE || dim_reset) && !s->actually_webp && !is_vp7) { s->pix_fmt = get_pixel_format(s); if (s->pix_fmt < 0) return AVERROR(EINVAL); avctx->pix_fmt = s->pix_fmt; } s->mb_width = (s->avctx->coded_width + 15) / 16; s->mb_height = (s->avctx->coded_height + 15) / 16; s->mb_layout = is_vp7 || avctx->active_thread_type == FF_THREAD_SLICE && avctx->thread_count > 1; if (!s->mb_layout) { // Frame threading and one thread s->macroblocks_base = av_mallocz((s->mb_width + s->mb_height * 2 + 1) * sizeof(*s->macroblocks)); s->intra4x4_pred_mode_top = av_mallocz(s->mb_width * 4); } else // Sliced threading s->macroblocks_base = av_mallocz((s->mb_width + 2) * (s->mb_height + 2) * sizeof(*s->macroblocks)); s->top_nnz = av_mallocz(s->mb_width * sizeof(*s->top_nnz)); s->top_border = av_mallocz((s->mb_width + 1) * sizeof(*s->top_border)); s->thread_data = av_mallocz(MAX_THREADS * sizeof(VP8ThreadData)); if (!s->macroblocks_base || !s->top_nnz || !s->top_border || !s->thread_data || (!s->intra4x4_pred_mode_top && !s->mb_layout)) { free_buffers(s); return AVERROR(ENOMEM); } for (i = 0; i < MAX_THREADS; i++) { s->thread_data[i].filter_strength = av_mallocz(s->mb_width * sizeof(*s->thread_data[0].filter_strength)); if (!s->thread_data[i].filter_strength) { free_buffers(s); return AVERROR(ENOMEM); } #if HAVE_THREADS pthread_mutex_init(&s->thread_data[i].lock, NULL); pthread_cond_init(&s->thread_data[i].cond, NULL); #endif } s->macroblocks = s->macroblocks_base + 1; return 0; } static int vp7_update_dimensions(VP8Context *s, int width, int height) { return update_dimensions(s, width, height, IS_VP7); } static int vp8_update_dimensions(VP8Context *s, int width, int height) { return update_dimensions(s, width, height, IS_VP8); } static void parse_segment_info(VP8Context *s) { VPXRangeCoder *c = &s->c; int i; s->segmentation.update_map = vp89_rac_get(c); s->segmentation.update_feature_data = vp89_rac_get(c); if (s->segmentation.update_feature_data) { s->segmentation.absolute_vals = vp89_rac_get(c); for (i = 0; i < 4; i++) s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7); for (i = 0; i < 4; i++) s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6); } if (s->segmentation.update_map) for (i = 0; i < 3; i++) s->prob->segmentid[i] = vp89_rac_get(c) ? vp89_rac_get_uint(c, 8) : 255; } static void update_lf_deltas(VP8Context *s) { VPXRangeCoder *c = &s->c; int i; for (i = 0; i < 4; i++) { if (vp89_rac_get(c)) { s->lf_delta.ref[i] = vp89_rac_get_uint(c, 6); if (vp89_rac_get(c)) s->lf_delta.ref[i] = -s->lf_delta.ref[i]; } } for (i = MODE_I4x4; i <= VP8_MVMODE_SPLIT; i++) { if (vp89_rac_get(c)) { s->lf_delta.mode[i] = vp89_rac_get_uint(c, 6); if (vp89_rac_get(c)) s->lf_delta.mode[i] = -s->lf_delta.mode[i]; } } } static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size) { const uint8_t *sizes = buf; int i; int ret; s->num_coeff_partitions = 1 << vp89_rac_get_uint(&s->c, 2); buf += 3 * (s->num_coeff_partitions - 1); buf_size -= 3 * (s->num_coeff_partitions - 1); if (buf_size < 0) return -1; for (i = 0; i < s->num_coeff_partitions - 1; i++) { int size = AV_RL24(sizes + 3 * i); if (buf_size - size < 0) return -1; s->coeff_partition_size[i] = size; ret = ff_vpx_init_range_decoder(&s->coeff_partition[i], buf, size); if (ret < 0) return ret; buf += size; buf_size -= size; } s->coeff_partition_size[i] = buf_size; ff_vpx_init_range_decoder(&s->coeff_partition[i], buf, buf_size); return 0; } static void vp7_get_quants(VP8Context *s) { VPXRangeCoder *c = &s->c; int yac_qi = vp89_rac_get_uint(c, 7); int ydc_qi = vp89_rac_get(c) ? vp89_rac_get_uint(c, 7) : yac_qi; int y2dc_qi = vp89_rac_get(c) ? vp89_rac_get_uint(c, 7) : yac_qi; int y2ac_qi = vp89_rac_get(c) ? vp89_rac_get_uint(c, 7) : yac_qi; int uvdc_qi = vp89_rac_get(c) ? vp89_rac_get_uint(c, 7) : yac_qi; int uvac_qi = vp89_rac_get(c) ? vp89_rac_get_uint(c, 7) : yac_qi; s->qmat[0].luma_qmul[0] = vp7_ydc_qlookup[ydc_qi]; s->qmat[0].luma_qmul[1] = vp7_yac_qlookup[yac_qi]; s->qmat[0].luma_dc_qmul[0] = vp7_y2dc_qlookup[y2dc_qi]; s->qmat[0].luma_dc_qmul[1] = vp7_y2ac_qlookup[y2ac_qi]; s->qmat[0].chroma_qmul[0] = FFMIN(vp7_ydc_qlookup[uvdc_qi], 132); s->qmat[0].chroma_qmul[1] = vp7_yac_qlookup[uvac_qi]; } static void vp8_get_quants(VP8Context *s) { VPXRangeCoder *c = &s->c; int i, base_qi; s->quant.yac_qi = vp89_rac_get_uint(c, 7); s->quant.ydc_delta = vp8_rac_get_sint(c, 4); s->quant.y2dc_delta = vp8_rac_get_sint(c, 4); s->quant.y2ac_delta = vp8_rac_get_sint(c, 4); s->quant.uvdc_delta = vp8_rac_get_sint(c, 4); s->quant.uvac_delta = vp8_rac_get_sint(c, 4); for (i = 0; i < 4; i++) { if (s->segmentation.enabled) { base_qi = s->segmentation.base_quant[i]; if (!s->segmentation.absolute_vals) base_qi += s->quant.yac_qi; } else base_qi = s->quant.yac_qi; s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + s->quant.ydc_delta, 7)]; s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi, 7)]; s->qmat[i].luma_dc_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + s->quant.y2dc_delta, 7)] * 2; /* 101581>>16 is equivalent to 155/100 */ s->qmat[i].luma_dc_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi + s->quant.y2ac_delta, 7)] * 101581 >> 16; s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip_uintp2(base_qi + s->quant.uvdc_delta, 7)]; s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip_uintp2(base_qi + s->quant.uvac_delta, 7)]; s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8); s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132); } } /** * Determine which buffers golden and altref should be updated with after this frame. * The spec isn't clear here, so I'm going by my understanding of what libvpx does * * Intra frames update all 3 references * Inter frames update VP8_FRAME_PREVIOUS if the update_last flag is set * If the update (golden|altref) flag is set, it's updated with the current frame * if update_last is set, and VP8_FRAME_PREVIOUS otherwise. * If the flag is not set, the number read means: * 0: no update * 1: VP8_FRAME_PREVIOUS * 2: update golden with altref, or update altref with golden */ static VP8FrameType ref_to_update(VP8Context *s, int update, VP8FrameType ref) { VPXRangeCoder *c = &s->c; if (update) return VP8_FRAME_CURRENT; switch (vp89_rac_get_uint(c, 2)) { case 1: return VP8_FRAME_PREVIOUS; case 2: return (ref == VP8_FRAME_GOLDEN) ? VP8_FRAME_ALTREF : VP8_FRAME_GOLDEN; } return VP8_FRAME_NONE; } static void vp78_reset_probability_tables(VP8Context *s) { int i, j; for (i = 0; i < 4; i++) for (j = 0; j < 16; j++) memcpy(s->prob->token[i][j], vp8_token_default_probs[i][vp8_coeff_band[j]], sizeof(s->prob->token[i][j])); } static void vp78_update_probability_tables(VP8Context *s) { VPXRangeCoder *c = &s->c; int i, j, k, l, m; for (i = 0; i < 4; i++) for (j = 0; j < 8; j++) for (k = 0; k < 3; k++) for (l = 0; l < NUM_DCT_TOKENS-1; l++) if (vpx_rac_get_prob_branchy(c, vp8_token_update_probs[i][j][k][l])) { int prob = vp89_rac_get_uint(c, 8); for (m = 0; vp8_coeff_band_indexes[j][m] >= 0; m++) s->prob->token[i][vp8_coeff_band_indexes[j][m]][k][l] = prob; } } #define VP7_MVC_SIZE 17 #define VP8_MVC_SIZE 19 static void vp78_update_pred16x16_pred8x8_mvc_probabilities(VP8Context *s, int mvc_size) { VPXRangeCoder *c = &s->c; int i, j; if (vp89_rac_get(c)) for (i = 0; i < 4; i++) s->prob->pred16x16[i] = vp89_rac_get_uint(c, 8); if (vp89_rac_get(c)) for (i = 0; i < 3; i++) s->prob->pred8x8c[i] = vp89_rac_get_uint(c, 8); // 17.2 MV probability update for (i = 0; i < 2; i++) for (j = 0; j < mvc_size; j++) if (vpx_rac_get_prob_branchy(c, vp8_mv_update_prob[i][j])) s->prob->mvc[i][j] = vp8_rac_get_nn(c); } static void update_refs(VP8Context *s) { VPXRangeCoder *c = &s->c; int update_golden = vp89_rac_get(c); int update_altref = vp89_rac_get(c); s->update_golden = ref_to_update(s, update_golden, VP8_FRAME_GOLDEN); s->update_altref = ref_to_update(s, update_altref, VP8_FRAME_ALTREF); } static void copy_chroma(AVFrame *dst, const AVFrame *src, int width, int height) { int i, j; for (j = 1; j < 3; j++) { for (i = 0; i < height / 2; i++) memcpy(dst->data[j] + i * dst->linesize[j], src->data[j] + i * src->linesize[j], width / 2); } } static void fade(uint8_t *dst, ptrdiff_t dst_linesize, const uint8_t *src, ptrdiff_t src_linesize, int width, int height, int alpha, int beta) { int i, j; for (j = 0; j < height; j++) { const uint8_t *src2 = src + j * src_linesize; uint8_t *dst2 = dst + j * dst_linesize; for (i = 0; i < width; i++) { uint8_t y = src2[i]; dst2[i] = av_clip_uint8(y + ((y * beta) >> 8) + alpha); } } } static int vp7_fade_frame(VP8Context *s, int alpha, int beta) { int ret; if (!s->keyframe && (alpha || beta)) { int width = s->mb_width * 16; int height = s->mb_height * 16; const AVFrame *src; AVFrame *dst; if (!s->framep[VP8_FRAME_PREVIOUS] || !s->framep[VP8_FRAME_GOLDEN]) { av_log(s->avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n"); return AVERROR_INVALIDDATA; } src = dst = s->framep[VP8_FRAME_PREVIOUS]->tf.f; /* preserve the golden frame, write a new previous frame */ if (s->framep[VP8_FRAME_GOLDEN] == s->framep[VP8_FRAME_PREVIOUS]) { s->framep[VP8_FRAME_PREVIOUS] = vp8_find_free_buffer(s); if ((ret = vp8_alloc_frame(s, s->framep[VP8_FRAME_PREVIOUS], 1)) < 0) return ret; dst = s->framep[VP8_FRAME_PREVIOUS]->tf.f; copy_chroma(dst, src, width, height); } fade(dst->data[0], dst->linesize[0], src->data[0], src->linesize[0], width, height, alpha, beta); } return 0; } static int vp7_decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size) { VPXRangeCoder *c = &s->c; int part1_size, hscale, vscale, i, j, ret; int width = s->avctx->width; int height = s->avctx->height; int alpha = 0; int beta = 0; int fade_present = 1; if (buf_size < 4) { return AVERROR_INVALIDDATA; } s->profile = (buf[0] >> 1) & 7; if (s->profile > 1) { avpriv_request_sample(s->avctx, "Unknown profile %d", s->profile); return AVERROR_INVALIDDATA; } s->keyframe = !(buf[0] & 1); s->invisible = 0; part1_size = AV_RL24(buf) >> 4; if (buf_size < 4 - s->profile + part1_size) { av_log(s->avctx, AV_LOG_ERROR, "Buffer size %d is too small, needed : %d\n", buf_size, 4 - s->profile + part1_size); return AVERROR_INVALIDDATA; } buf += 4 - s->profile; buf_size -= 4 - s->profile; memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab)); ret = ff_vpx_init_range_decoder(c, buf, part1_size); if (ret < 0) return ret; buf += part1_size; buf_size -= part1_size; /* A. Dimension information (keyframes only) */ if (s->keyframe) { width = vp89_rac_get_uint(c, 12); height = vp89_rac_get_uint(c, 12); hscale = vp89_rac_get_uint(c, 2); vscale = vp89_rac_get_uint(c, 2); if (hscale || vscale) avpriv_request_sample(s->avctx, "Upscaling"); s->update_golden = s->update_altref = VP8_FRAME_CURRENT; vp78_reset_probability_tables(s); memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16)); memcpy(s->prob->pred8x8c, vp8_pred8x8c_prob_inter, sizeof(s->prob->pred8x8c)); for (i = 0; i < 2; i++) memcpy(s->prob->mvc[i], vp7_mv_default_prob[i], sizeof(vp7_mv_default_prob[i])); memset(&s->segmentation, 0, sizeof(s->segmentation)); memset(&s->lf_delta, 0, sizeof(s->lf_delta)); memcpy(s->prob[0].scan, ff_zigzag_scan, sizeof(s->prob[0].scan)); } if (s->keyframe || s->profile > 0) memset(s->inter_dc_pred, 0 , sizeof(s->inter_dc_pred)); /* B. Decoding information for all four macroblock-level features */ for (i = 0; i < 4; i++) { s->feature_enabled[i] = vp89_rac_get(c); if (s->feature_enabled[i]) { s->feature_present_prob[i] = vp89_rac_get_uint(c, 8); for (j = 0; j < 3; j++) s->feature_index_prob[i][j] = vp89_rac_get(c) ? vp89_rac_get_uint(c, 8) : 255; if (vp7_feature_value_size[s->profile][i]) for (j = 0; j < 4; j++) s->feature_value[i][j] = vp89_rac_get(c) ? vp89_rac_get_uint(c, vp7_feature_value_size[s->profile][i]) : 0; } } s->segmentation.enabled = 0; s->segmentation.update_map = 0; s->lf_delta.enabled = 0; s->num_coeff_partitions = 1; ret = ff_vpx_init_range_decoder(&s->coeff_partition[0], buf, buf_size); if (ret < 0) return ret; if (!s->macroblocks_base || /* first frame */ width != s->avctx->width || height != s->avctx->height || (width + 15) / 16 != s->mb_width || (height + 15) / 16 != s->mb_height) { if ((ret = vp7_update_dimensions(s, width, height)) < 0) return ret; } /* C. Dequantization indices */ vp7_get_quants(s); /* D. Golden frame update flag (a Flag) for interframes only */ if (!s->keyframe) { s->update_golden = vp89_rac_get(c) ? VP8_FRAME_CURRENT : VP8_FRAME_NONE; s->sign_bias[VP8_FRAME_GOLDEN] = 0; } s->update_last = 1; s->update_probabilities = 1; if (s->profile > 0) { s->update_probabilities = vp89_rac_get(c); if (!s->update_probabilities) s->prob[1] = s->prob[0]; if (!s->keyframe) fade_present = vp89_rac_get(c); } if (vpx_rac_is_end(c)) return AVERROR_INVALIDDATA; /* E. Fading information for previous frame */ if (fade_present && vp89_rac_get(c)) { alpha = (int8_t) vp89_rac_get_uint(c, 8); beta = (int8_t) vp89_rac_get_uint(c, 8); } /* F. Loop filter type */ if (!s->profile) s->filter.simple = vp89_rac_get(c); /* G. DCT coefficient ordering specification */ if (vp89_rac_get(c)) for (i = 1; i < 16; i++) s->prob[0].scan[i] = ff_zigzag_scan[vp89_rac_get_uint(c, 4)]; /* H. Loop filter levels */ if (s->profile > 0) s->filter.simple = vp89_rac_get(c); s->filter.level = vp89_rac_get_uint(c, 6); s->filter.sharpness = vp89_rac_get_uint(c, 3); /* I. DCT coefficient probability update; 13.3 Token Probability Updates */ vp78_update_probability_tables(s); s->mbskip_enabled = 0; /* J. The remaining frame header data occurs ONLY FOR INTERFRAMES */ if (!s->keyframe) { s->prob->intra = vp89_rac_get_uint(c, 8); s->prob->last = vp89_rac_get_uint(c, 8); vp78_update_pred16x16_pred8x8_mvc_probabilities(s, VP7_MVC_SIZE); } if (vpx_rac_is_end(c)) return AVERROR_INVALIDDATA; if ((ret = vp7_fade_frame(s, alpha, beta)) < 0) return ret; return 0; } static int vp8_decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size) { VPXRangeCoder *c = &s->c; int header_size, hscale, vscale, ret; int width = s->avctx->width; int height = s->avctx->height; if (buf_size < 3) { av_log(s->avctx, AV_LOG_ERROR, "Insufficent data (%d) for header\n", buf_size); return AVERROR_INVALIDDATA; } s->keyframe = !(buf[0] & 1); s->profile = (buf[0]>>1) & 7; s->invisible = !(buf[0] & 0x10); header_size = AV_RL24(buf) >> 5; buf += 3; buf_size -= 3; s->header_partition_size = header_size; if (s->profile > 3) av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile); if (!s->profile) memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab)); else // profile 1-3 use bilinear, 4+ aren't defined so whatever memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab)); if (header_size > buf_size - 7 * s->keyframe) { av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n"); return AVERROR_INVALIDDATA; } if (s->keyframe) { if (AV_RL24(buf) != 0x2a019d) { av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", AV_RL24(buf)); return AVERROR_INVALIDDATA; } width = AV_RL16(buf + 3) & 0x3fff; height = AV_RL16(buf + 5) & 0x3fff; hscale = buf[4] >> 6; vscale = buf[6] >> 6; buf += 7; buf_size -= 7; if (hscale || vscale) avpriv_request_sample(s->avctx, "Upscaling"); s->update_golden = s->update_altref = VP8_FRAME_CURRENT; vp78_reset_probability_tables(s); memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16)); memcpy(s->prob->pred8x8c, vp8_pred8x8c_prob_inter, sizeof(s->prob->pred8x8c)); memcpy(s->prob->mvc, vp8_mv_default_prob, sizeof(s->prob->mvc)); memset(&s->segmentation, 0, sizeof(s->segmentation)); memset(&s->lf_delta, 0, sizeof(s->lf_delta)); } ret = ff_vpx_init_range_decoder(c, buf, header_size); if (ret < 0) return ret; buf += header_size; buf_size -= header_size; if (s->keyframe) { s->colorspace = vp89_rac_get(c); if (s->colorspace) av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n"); s->fullrange = vp89_rac_get(c); } if ((s->segmentation.enabled = vp89_rac_get(c))) parse_segment_info(s); else s->segmentation.update_map = 0; // FIXME: move this to some init function? s->filter.simple = vp89_rac_get(c); s->filter.level = vp89_rac_get_uint(c, 6); s->filter.sharpness = vp89_rac_get_uint(c, 3); if ((s->lf_delta.enabled = vp89_rac_get(c))) { s->lf_delta.update = vp89_rac_get(c); if (s->lf_delta.update) update_lf_deltas(s); } if (setup_partitions(s, buf, buf_size)) { av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n"); return AVERROR_INVALIDDATA; } if (!s->macroblocks_base || /* first frame */ width != s->avctx->width || height != s->avctx->height || (width+15)/16 != s->mb_width || (height+15)/16 != s->mb_height) if ((ret = vp8_update_dimensions(s, width, height)) < 0) return ret; vp8_get_quants(s); if (!s->keyframe) { update_refs(s); s->sign_bias[VP8_FRAME_GOLDEN] = vp89_rac_get(c); s->sign_bias[VP8_FRAME_ALTREF] = vp89_rac_get(c); } // if we aren't saving this frame's probabilities for future frames, // make a copy of the current probabilities if (!(s->update_probabilities = vp89_rac_get(c))) s->prob[1] = s->prob[0]; s->update_last = s->keyframe || vp89_rac_get(c); vp78_update_probability_tables(s); if ((s->mbskip_enabled = vp89_rac_get(c))) s->prob->mbskip = vp89_rac_get_uint(c, 8); if (!s->keyframe) { s->prob->intra = vp89_rac_get_uint(c, 8); s->prob->last = vp89_rac_get_uint(c, 8); s->prob->golden = vp89_rac_get_uint(c, 8); vp78_update_pred16x16_pred8x8_mvc_probabilities(s, VP8_MVC_SIZE); } // Record the entropy coder state here so that hwaccels can use it. s->c.code_word = vpx_rac_renorm(&s->c); s->coder_state_at_header_end.input = s->c.buffer - (-s->c.bits / 8); s->coder_state_at_header_end.range = s->c.high; s->coder_state_at_header_end.value = s->c.code_word >> 16; s->coder_state_at_header_end.bit_count = -s->c.bits % 8; return 0; } static av_always_inline void clamp_mv(const VP8mvbounds *s, VP8mv *dst, const VP8mv *src) { dst->x = av_clip(src->x, av_clip(s->mv_min.x, INT16_MIN, INT16_MAX), av_clip(s->mv_max.x, INT16_MIN, INT16_MAX)); dst->y = av_clip(src->y, av_clip(s->mv_min.y, INT16_MIN, INT16_MAX), av_clip(s->mv_max.y, INT16_MIN, INT16_MAX)); } /** * Motion vector coding, 17.1. */ static av_always_inline int read_mv_component(VPXRangeCoder *c, const uint8_t *p, int vp7) { int bit, x = 0; if (vpx_rac_get_prob_branchy(c, p[0])) { int i; for (i = 0; i < 3; i++) x += vpx_rac_get_prob(c, p[9 + i]) << i; for (i = (vp7 ? 7 : 9); i > 3; i--) x += vpx_rac_get_prob(c, p[9 + i]) << i; if (!(x & (vp7 ? 0xF0 : 0xFFF0)) || vpx_rac_get_prob(c, p[12])) x += 8; } else { // small_mvtree const uint8_t *ps = p + 2; bit = vpx_rac_get_prob(c, *ps); ps += 1 + 3 * bit; x += 4 * bit; bit = vpx_rac_get_prob(c, *ps); ps += 1 + bit; x += 2 * bit; x += vpx_rac_get_prob(c, *ps); } return (x && vpx_rac_get_prob(c, p[1])) ? -x : x; } static int vp7_read_mv_component(VPXRangeCoder *c, const uint8_t *p) { return read_mv_component(c, p, 1); } static int vp8_read_mv_component(VPXRangeCoder *c, const uint8_t *p) { return read_mv_component(c, p, 0); } static av_always_inline const uint8_t *get_submv_prob(uint32_t left, uint32_t top, int is_vp7) { if (is_vp7) return vp7_submv_prob; if (left == top) return vp8_submv_prob[4 - !!left]; if (!top) return vp8_submv_prob[2]; return vp8_submv_prob[1 - !!left]; } /** * Split motion vector prediction, 16.4. * @returns the number of motion vectors parsed (2, 4 or 16) */ static av_always_inline int decode_splitmvs(const VP8Context *s, VPXRangeCoder *c, VP8Macroblock *mb, int layout, int is_vp7) { int part_idx; int n, num; const VP8Macroblock *top_mb; const VP8Macroblock *left_mb = &mb[-1]; const uint8_t *mbsplits_left = vp8_mbsplits[left_mb->partitioning]; const uint8_t *mbsplits_top, *mbsplits_cur, *firstidx; const VP8mv *top_mv; const VP8mv *left_mv = left_mb->bmv; const VP8mv *cur_mv = mb->bmv; if (!layout) // layout is inlined, s->mb_layout is not top_mb = &mb[2]; else top_mb = &mb[-s->mb_width - 1]; mbsplits_top = vp8_mbsplits[top_mb->partitioning]; top_mv = top_mb->bmv; if (vpx_rac_get_prob_branchy(c, vp8_mbsplit_prob[0])) { if (vpx_rac_get_prob_branchy(c, vp8_mbsplit_prob[1])) part_idx = VP8_SPLITMVMODE_16x8 + vpx_rac_get_prob(c, vp8_mbsplit_prob[2]); else part_idx = VP8_SPLITMVMODE_8x8; } else { part_idx = VP8_SPLITMVMODE_4x4; } num = vp8_mbsplit_count[part_idx]; mbsplits_cur = vp8_mbsplits[part_idx], firstidx = vp8_mbfirstidx[part_idx]; mb->partitioning = part_idx; for (n = 0; n < num; n++) { int k = firstidx[n]; uint32_t left, above; const uint8_t *submv_prob; if (!(k & 3)) left = AV_RN32A(&left_mv[mbsplits_left[k + 3]]); else left = AV_RN32A(&cur_mv[mbsplits_cur[k - 1]]); if (k <= 3) above = AV_RN32A(&top_mv[mbsplits_top[k + 12]]); else above = AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]); submv_prob = get_submv_prob(left, above, is_vp7); if (vpx_rac_get_prob_branchy(c, submv_prob[0])) { if (vpx_rac_get_prob_branchy(c, submv_prob[1])) { if (vpx_rac_get_prob_branchy(c, submv_prob[2])) { mb->bmv[n].y = mb->mv.y + read_mv_component(c, s->prob->mvc[0], is_vp7); mb->bmv[n].x = mb->mv.x + read_mv_component(c, s->prob->mvc[1], is_vp7); } else { AV_ZERO32(&mb->bmv[n]); } } else { AV_WN32A(&mb->bmv[n], above); } } else { AV_WN32A(&mb->bmv[n], left); } } return num; } /** * The vp7 reference decoder uses a padding macroblock column (added to right * edge of the frame) to guard against illegal macroblock offsets. The * algorithm has bugs that permit offsets to straddle the padding column. * This function replicates those bugs. * * @param[out] edge_x macroblock x address * @param[out] edge_y macroblock y address * * @return macroblock offset legal (boolean) */ static int vp7_calculate_mb_offset(int mb_x, int mb_y, int mb_width, int xoffset, int yoffset, int boundary, int *edge_x, int *edge_y) { int vwidth = mb_width + 1; int new = (mb_y + yoffset) * vwidth + mb_x + xoffset; if (new < boundary || new % vwidth == vwidth - 1) return 0; *edge_y = new / vwidth; *edge_x = new % vwidth; return 1; } static const VP8mv *get_bmv_ptr(const VP8Macroblock *mb, int subblock) { return &mb->bmv[mb->mode == VP8_MVMODE_SPLIT ? vp8_mbsplits[mb->partitioning][subblock] : 0]; } static av_always_inline void vp7_decode_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int layout) { enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR }; enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT }; int idx = CNT_ZERO; VP8mv near_mv[3]; uint8_t cnt[3] = { 0 }; VPXRangeCoder *c = &s->c; int i; AV_ZERO32(&near_mv[0]); AV_ZERO32(&near_mv[1]); AV_ZERO32(&near_mv[2]); for (i = 0; i < VP7_MV_PRED_COUNT; i++) { const VP7MVPred * pred = &vp7_mv_pred[i]; int edge_x, edge_y; if (vp7_calculate_mb_offset(mb_x, mb_y, s->mb_width, pred->xoffset, pred->yoffset, !s->profile, &edge_x, &edge_y)) { const VP8Macroblock *edge = (s->mb_layout == 1) ? s->macroblocks_base + 1 + edge_x + (s->mb_width + 1) * (edge_y + 1) : s->macroblocks + edge_x + (s->mb_height - edge_y - 1) * 2; uint32_t mv = AV_RN32A(get_bmv_ptr(edge, vp7_mv_pred[i].subblock)); if (mv) { if (AV_RN32A(&near_mv[CNT_NEAREST])) { if (mv == AV_RN32A(&near_mv[CNT_NEAREST])) { idx = CNT_NEAREST; } else if (AV_RN32A(&near_mv[CNT_NEAR])) { if (mv != AV_RN32A(&near_mv[CNT_NEAR])) continue; idx = CNT_NEAR; } else { AV_WN32A(&near_mv[CNT_NEAR], mv); idx = CNT_NEAR; } } else { AV_WN32A(&near_mv[CNT_NEAREST], mv); idx = CNT_NEAREST; } } else { idx = CNT_ZERO; } } else { idx = CNT_ZERO; } cnt[idx] += vp7_mv_pred[i].score; } mb->partitioning = VP8_SPLITMVMODE_NONE; if (vpx_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_ZERO]][0])) { mb->mode = VP8_MVMODE_MV; if (vpx_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_NEAREST]][1])) { if (vpx_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_NEAR]][2])) { if (cnt[CNT_NEAREST] > cnt[CNT_NEAR]) AV_WN32A(&mb->mv, cnt[CNT_ZERO] > cnt[CNT_NEAREST] ? 0 : AV_RN32A(&near_mv[CNT_NEAREST])); else AV_WN32A(&mb->mv, cnt[CNT_ZERO] > cnt[CNT_NEAR] ? 0 : AV_RN32A(&near_mv[CNT_NEAR])); if (vpx_rac_get_prob_branchy(c, vp7_mode_contexts[cnt[CNT_NEAR]][3])) { mb->mode = VP8_MVMODE_SPLIT; mb->mv = mb->bmv[decode_splitmvs(s, c, mb, layout, IS_VP7) - 1]; } else { mb->mv.y += vp7_read_mv_component(c, s->prob->mvc[0]); mb->mv.x += vp7_read_mv_component(c, s->prob->mvc[1]); mb->bmv[0] = mb->mv; } } else { mb->mv = near_mv[CNT_NEAR]; mb->bmv[0] = mb->mv; } } else { mb->mv = near_mv[CNT_NEAREST]; mb->bmv[0] = mb->mv; } } else { mb->mode = VP8_MVMODE_ZERO; AV_ZERO32(&mb->mv); mb->bmv[0] = mb->mv; } } static av_always_inline void vp8_decode_mvs(VP8Context *s, const VP8mvbounds *mv_bounds, VP8Macroblock *mb, int mb_x, int mb_y, int layout) { VP8Macroblock *mb_edge[3] = { 0 /* top */, mb - 1 /* left */, 0 /* top-left */ }; enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV }; enum { VP8_EDGE_TOP, VP8_EDGE_LEFT, VP8_EDGE_TOPLEFT }; int idx = CNT_ZERO; int cur_sign_bias = s->sign_bias[mb->ref_frame]; const int8_t *sign_bias = s->sign_bias; VP8mv near_mv[4]; uint8_t cnt[4] = { 0 }; VPXRangeCoder *c = &s->c; if (!layout) { // layout is inlined (s->mb_layout is not) mb_edge[0] = mb + 2; mb_edge[2] = mb + 1; } else { mb_edge[0] = mb - s->mb_width - 1; mb_edge[2] = mb - s->mb_width - 2; } AV_ZERO32(&near_mv[0]); AV_ZERO32(&near_mv[1]); AV_ZERO32(&near_mv[2]); /* Process MB on top, left and top-left */ #define MV_EDGE_CHECK(n) \ { \ const VP8Macroblock *edge = mb_edge[n]; \ int edge_ref = edge->ref_frame; \ if (edge_ref != VP8_FRAME_CURRENT) { \ uint32_t mv = AV_RN32A(&edge->mv); \ if (mv) { \ if (cur_sign_bias != sign_bias[edge_ref]) { \ /* SWAR negate of the values in mv. */ \ mv = ~mv; \ mv = ((mv & 0x7fff7fff) + \ 0x00010001) ^ (mv & 0x80008000); \ } \ if (!n || mv != AV_RN32A(&near_mv[idx])) \ AV_WN32A(&near_mv[++idx], mv); \ cnt[idx] += 1 + (n != 2); \ } else \ cnt[CNT_ZERO] += 1 + (n != 2); \ } \ } MV_EDGE_CHECK(0) MV_EDGE_CHECK(1) MV_EDGE_CHECK(2) mb->partitioning = VP8_SPLITMVMODE_NONE; if (vpx_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_ZERO]][0])) { mb->mode = VP8_MVMODE_MV; /* If we have three distinct MVs, merge first and last if they're the same */ if (cnt[CNT_SPLITMV] && AV_RN32A(&near_mv[1 + VP8_EDGE_TOP]) == AV_RN32A(&near_mv[1 + VP8_EDGE_TOPLEFT])) cnt[CNT_NEAREST] += 1; /* Swap near and nearest if necessary */ if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) { FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]); FFSWAP(VP8mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]); } if (vpx_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAREST]][1])) { if (vpx_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_NEAR]][2])) { /* Choose the best mv out of 0,0 and the nearest mv */ clamp_mv(mv_bounds, &mb->mv, &near_mv[CNT_ZERO + (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])]); cnt[CNT_SPLITMV] = ((mb_edge[VP8_EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) + (mb_edge[VP8_EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 + (mb_edge[VP8_EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT); if (vpx_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[CNT_SPLITMV]][3])) { mb->mode = VP8_MVMODE_SPLIT; mb->mv = mb->bmv[decode_splitmvs(s, c, mb, layout, IS_VP8) - 1]; } else { mb->mv.y += vp8_read_mv_component(c, s->prob->mvc[0]); mb->mv.x += vp8_read_mv_component(c, s->prob->mvc[1]); mb->bmv[0] = mb->mv; } } else { clamp_mv(mv_bounds, &mb->mv, &near_mv[CNT_NEAR]); mb->bmv[0] = mb->mv; } } else { clamp_mv(mv_bounds, &mb->mv, &near_mv[CNT_NEAREST]); mb->bmv[0] = mb->mv; } } else { mb->mode = VP8_MVMODE_ZERO; AV_ZERO32(&mb->mv); mb->bmv[0] = mb->mv; } } static av_always_inline void decode_intra4x4_modes(VP8Context *s, VPXRangeCoder *c, VP8Macroblock *mb, int mb_x, int keyframe, int layout) { uint8_t *intra4x4 = mb->intra4x4_pred_mode_mb; if (layout) { VP8Macroblock *mb_top = mb - s->mb_width - 1; memcpy(mb->intra4x4_pred_mode_top, mb_top->intra4x4_pred_mode_top, 4); } if (keyframe) { int x, y; uint8_t *top; uint8_t *const left = s->intra4x4_pred_mode_left; if (layout) top = mb->intra4x4_pred_mode_top; else top = s->intra4x4_pred_mode_top + 4 * mb_x; for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { const uint8_t *ctx; ctx = vp8_pred4x4_prob_intra[top[x]][left[y]]; *intra4x4 = vp89_rac_get_tree(c, vp8_pred4x4_tree, ctx); left[y] = top[x] = *intra4x4; intra4x4++; } } } else { int i; for (i = 0; i < 16; i++) intra4x4[i] = vp89_rac_get_tree(c, vp8_pred4x4_tree, vp8_pred4x4_prob_inter); } } static av_always_inline void decode_mb_mode(VP8Context *s, const VP8mvbounds *mv_bounds, VP8Macroblock *mb, int mb_x, int mb_y, uint8_t *segment, const uint8_t *ref, int layout, int is_vp7) { VPXRangeCoder *c = &s->c; static const char * const vp7_feature_name[] = { "q-index", "lf-delta", "partial-golden-update", "blit-pitch" }; if (is_vp7) { int i; *segment = 0; for (i = 0; i < 4; i++) { if (s->feature_enabled[i]) { if (vpx_rac_get_prob_branchy(c, s->feature_present_prob[i])) { int index = vp89_rac_get_tree(c, vp7_feature_index_tree, s->feature_index_prob[i]); av_log(s->avctx, AV_LOG_WARNING, "Feature %s present in macroblock (value 0x%x)\n", vp7_feature_name[i], s->feature_value[i][index]); } } } } else if (s->segmentation.update_map) { int bit = vpx_rac_get_prob(c, s->prob->segmentid[0]); *segment = vpx_rac_get_prob(c, s->prob->segmentid[1+bit]) + 2*bit; } else if (s->segmentation.enabled) *segment = ref ? *ref : *segment; mb->segment = *segment; mb->skip = s->mbskip_enabled ? vpx_rac_get_prob(c, s->prob->mbskip) : 0; if (s->keyframe) { mb->mode = vp89_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra); if (mb->mode == MODE_I4x4) { decode_intra4x4_modes(s, c, mb, mb_x, 1, layout); } else { const uint32_t modes = (is_vp7 ? vp7_pred4x4_mode : vp8_pred4x4_mode)[mb->mode] * 0x01010101u; if (s->mb_layout) AV_WN32A(mb->intra4x4_pred_mode_top, modes); else AV_WN32A(s->intra4x4_pred_mode_top + 4 * mb_x, modes); AV_WN32A(s->intra4x4_pred_mode_left, modes); } mb->chroma_pred_mode = vp89_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra); mb->ref_frame = VP8_FRAME_CURRENT; } else if (vpx_rac_get_prob_branchy(c, s->prob->intra)) { // inter MB, 16.2 if (vpx_rac_get_prob_branchy(c, s->prob->last)) mb->ref_frame = (!is_vp7 && vpx_rac_get_prob(c, s->prob->golden)) ? VP8_FRAME_ALTREF : VP8_FRAME_GOLDEN; else mb->ref_frame = VP8_FRAME_PREVIOUS; s->ref_count[mb->ref_frame - 1]++; // motion vectors, 16.3 if (is_vp7) vp7_decode_mvs(s, mb, mb_x, mb_y, layout); else vp8_decode_mvs(s, mv_bounds, mb, mb_x, mb_y, layout); } else { // intra MB, 16.1 mb->mode = vp89_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16); if (mb->mode == MODE_I4x4) decode_intra4x4_modes(s, c, mb, mb_x, 0, layout); mb->chroma_pred_mode = vp89_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c); mb->ref_frame = VP8_FRAME_CURRENT; mb->partitioning = VP8_SPLITMVMODE_NONE; AV_ZERO32(&mb->bmv[0]); } } /** * @param r arithmetic bitstream reader context * @param block destination for block coefficients * @param probs probabilities to use when reading trees from the bitstream * @param i initial coeff index, 0 unless a separate DC block is coded * @param qmul array holding the dc/ac dequant factor at position 0/1 * * @return 0 if no coeffs were decoded * otherwise, the index of the last coeff decoded plus one */ static av_always_inline int decode_block_coeffs_internal(VPXRangeCoder *r, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, const uint8_t *token_prob, const int16_t qmul[2], const uint8_t scan[16], int vp7) { VPXRangeCoder c = *r; goto skip_eob; do { int coeff; restart: if (!vpx_rac_get_prob_branchy(&c, token_prob[0])) // DCT_EOB break; skip_eob: if (!vpx_rac_get_prob_branchy(&c, token_prob[1])) { // DCT_0 if (++i == 16) break; // invalid input; blocks should end with EOB token_prob = probs[i][0]; if (vp7) goto restart; goto skip_eob; } if (!vpx_rac_get_prob_branchy(&c, token_prob[2])) { // DCT_1 coeff = 1; token_prob = probs[i + 1][1]; } else { if (!vpx_rac_get_prob_branchy(&c, token_prob[3])) { // DCT 2,3,4 coeff = vpx_rac_get_prob_branchy(&c, token_prob[4]); if (coeff) coeff += vpx_rac_get_prob(&c, token_prob[5]); coeff += 2; } else { // DCT_CAT* if (!vpx_rac_get_prob_branchy(&c, token_prob[6])) { if (!vpx_rac_get_prob_branchy(&c, token_prob[7])) { // DCT_CAT1 coeff = 5 + vpx_rac_get_prob(&c, vp8_dct_cat1_prob[0]); } else { // DCT_CAT2 coeff = 7; coeff += vpx_rac_get_prob(&c, vp8_dct_cat2_prob[0]) << 1; coeff += vpx_rac_get_prob(&c, vp8_dct_cat2_prob[1]); } } else { // DCT_CAT3 and up int a = vpx_rac_get_prob(&c, token_prob[8]); int b = vpx_rac_get_prob(&c, token_prob[9 + a]); int cat = (a << 1) + b; coeff = 3 + (8 << cat); coeff += vp8_rac_get_coeff(&c, ff_vp8_dct_cat_prob[cat]); } } token_prob = probs[i + 1][2]; } block[scan[i]] = (vp89_rac_get(&c) ? -coeff : coeff) * qmul[!!i]; } while (++i < 16); *r = c; return i; } static av_always_inline int inter_predict_dc(int16_t block[16], int16_t pred[2]) { int16_t dc = block[0]; int ret = 0; if (pred[1] > 3) { dc += pred[0]; ret = 1; } if (!pred[0] | !dc | ((int32_t)pred[0] ^ (int32_t)dc) >> 31) { block[0] = pred[0] = dc; pred[1] = 0; } else { if (pred[0] == dc) pred[1]++; block[0] = pred[0] = dc; } return ret; } static int vp7_decode_block_coeffs_internal(VPXRangeCoder *r, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, const uint8_t *token_prob, const int16_t qmul[2], const uint8_t scan[16]) { return decode_block_coeffs_internal(r, block, probs, i, token_prob, qmul, scan, IS_VP7); } #ifndef vp8_decode_block_coeffs_internal static int vp8_decode_block_coeffs_internal(VPXRangeCoder *r, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, const uint8_t *token_prob, const int16_t qmul[2]) { return decode_block_coeffs_internal(r, block, probs, i, token_prob, qmul, ff_zigzag_scan, IS_VP8); } #endif /** * @param c arithmetic bitstream reader context * @param block destination for block coefficients * @param probs probabilities to use when reading trees from the bitstream * @param i initial coeff index, 0 unless a separate DC block is coded * @param zero_nhood the initial prediction context for number of surrounding * all-zero blocks (only left/top, so 0-2) * @param qmul array holding the dc/ac dequant factor at position 0/1 * @param scan scan pattern (VP7 only) * * @return 0 if no coeffs were decoded * otherwise, the index of the last coeff decoded plus one */ static av_always_inline int decode_block_coeffs(VPXRangeCoder *c, int16_t block[16], uint8_t probs[16][3][NUM_DCT_TOKENS - 1], int i, int zero_nhood, const int16_t qmul[2], const uint8_t scan[16], int vp7) { const uint8_t *token_prob = probs[i][zero_nhood]; if (!vpx_rac_get_prob_branchy(c, token_prob[0])) // DCT_EOB return 0; return vp7 ? vp7_decode_block_coeffs_internal(c, block, probs, i, token_prob, qmul, scan) : vp8_decode_block_coeffs_internal(c, block, probs, i, token_prob, qmul); } static av_always_inline void decode_mb_coeffs(VP8Context *s, VP8ThreadData *td, VPXRangeCoder *c, VP8Macroblock *mb, uint8_t t_nnz[9], uint8_t l_nnz[9], int is_vp7) { int i, x, y, luma_start = 0, luma_ctx = 3; int nnz_pred, nnz, nnz_total = 0; int segment = mb->segment; int block_dc = 0; if (mb->mode != MODE_I4x4 && (is_vp7 || mb->mode != VP8_MVMODE_SPLIT)) { nnz_pred = t_nnz[8] + l_nnz[8]; // decode DC values and do hadamard nnz = decode_block_coeffs(c, td->block_dc, s->prob->token[1], 0, nnz_pred, s->qmat[segment].luma_dc_qmul, ff_zigzag_scan, is_vp7); l_nnz[8] = t_nnz[8] = !!nnz; if (is_vp7 && mb->mode > MODE_I4x4) { nnz |= inter_predict_dc(td->block_dc, s->inter_dc_pred[mb->ref_frame - 1]); } if (nnz) { nnz_total += nnz; block_dc = 1; if (nnz == 1) s->vp8dsp.vp8_luma_dc_wht_dc(td->block, td->block_dc); else s->vp8dsp.vp8_luma_dc_wht(td->block, td->block_dc); } luma_start = 1; luma_ctx = 0; } // luma blocks for (y = 0; y < 4; y++) for (x = 0; x < 4; x++) { nnz_pred = l_nnz[y] + t_nnz[x]; nnz = decode_block_coeffs(c, td->block[y][x], s->prob->token[luma_ctx], luma_start, nnz_pred, s->qmat[segment].luma_qmul, s->prob[0].scan, is_vp7); /* nnz+block_dc may be one more than the actual last index, * but we don't care */ td->non_zero_count_cache[y][x] = nnz + block_dc; t_nnz[x] = l_nnz[y] = !!nnz; nnz_total += nnz; } // chroma blocks // TODO: what to do about dimensions? 2nd dim for luma is x, // but for chroma it's (y<<1)|x for (i = 4; i < 6; i++) for (y = 0; y < 2; y++) for (x = 0; x < 2; x++) { nnz_pred = l_nnz[i + 2 * y] + t_nnz[i + 2 * x]; nnz = decode_block_coeffs(c, td->block[i][(y << 1) + x], s->prob->token[2], 0, nnz_pred, s->qmat[segment].chroma_qmul, s->prob[0].scan, is_vp7); td->non_zero_count_cache[i][(y << 1) + x] = nnz; t_nnz[i + 2 * x] = l_nnz[i + 2 * y] = !!nnz; nnz_total += nnz; } // if there were no coded coeffs despite the macroblock not being marked skip, // we MUST not do the inner loop filter and should not do IDCT // Since skip isn't used for bitstream prediction, just manually set it. if (!nnz_total) mb->skip = 1; } static av_always_inline void backup_mb_border(uint8_t *top_border, const uint8_t *src_y, const uint8_t *src_cb, const uint8_t *src_cr, ptrdiff_t linesize, ptrdiff_t uvlinesize, int simple) { AV_COPY128(top_border, src_y + 15 * linesize); if (!simple) { AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize); AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize); } } static av_always_inline void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, ptrdiff_t linesize, ptrdiff_t uvlinesize, int mb_x, int mb_y, int mb_width, int simple, int xchg) { uint8_t *top_border_m1 = top_border - 32; // for TL prediction src_y -= linesize; src_cb -= uvlinesize; src_cr -= uvlinesize; #define XCHG(a, b, xchg) \ do { \ if (xchg) \ AV_SWAP64(b, a); \ else \ AV_COPY64(b, a); \ } while (0) XCHG(top_border_m1 + 8, src_y - 8, xchg); XCHG(top_border, src_y, xchg); XCHG(top_border + 8, src_y + 8, 1); if (mb_x < mb_width - 1) XCHG(top_border + 32, src_y + 16, 1); // only copy chroma for normal loop filter // or to initialize the top row to 127 if (!simple || !mb_y) { XCHG(top_border_m1 + 16, src_cb - 8, xchg); XCHG(top_border_m1 + 24, src_cr - 8, xchg); XCHG(top_border + 16, src_cb, 1); XCHG(top_border + 24, src_cr, 1); } } static av_always_inline int check_dc_pred8x8_mode(int mode, int mb_x, int mb_y) { if (!mb_x) return mb_y ? TOP_DC_PRED8x8 : DC_128_PRED8x8; else return mb_y ? mode : LEFT_DC_PRED8x8; } static av_always_inline int check_tm_pred8x8_mode(int mode, int mb_x, int mb_y, int vp7) { if (!mb_x) return mb_y ? VERT_PRED8x8 : (vp7 ? DC_128_PRED8x8 : DC_129_PRED8x8); else return mb_y ? mode : HOR_PRED8x8; } static av_always_inline int check_intra_pred8x8_mode_emuedge(int mode, int mb_x, int mb_y, int vp7) { switch (mode) { case DC_PRED8x8: return check_dc_pred8x8_mode(mode, mb_x, mb_y); case VERT_PRED8x8: return !mb_y ? (vp7 ? DC_128_PRED8x8 : DC_127_PRED8x8) : mode; case HOR_PRED8x8: return !mb_x ? (vp7 ? DC_128_PRED8x8 : DC_129_PRED8x8) : mode; case PLANE_PRED8x8: /* TM */ return check_tm_pred8x8_mode(mode, mb_x, mb_y, vp7); } return mode; } static av_always_inline int check_tm_pred4x4_mode(int mode, int mb_x, int mb_y, int vp7) { if (!mb_x) { return mb_y ? VERT_VP8_PRED : (vp7 ? DC_128_PRED : DC_129_PRED); } else { return mb_y ? mode : HOR_VP8_PRED; } } static av_always_inline int check_intra_pred4x4_mode_emuedge(int mode, int mb_x, int mb_y, int *copy_buf, int vp7) { switch (mode) { case VERT_PRED: if (!mb_x && mb_y) { *copy_buf = 1; return mode; } /* fall-through */ case DIAG_DOWN_LEFT_PRED: case VERT_LEFT_PRED: return !mb_y ? (vp7 ? DC_128_PRED : DC_127_PRED) : mode; case HOR_PRED: if (!mb_y) { *copy_buf = 1; return mode; } /* fall-through */ case HOR_UP_PRED: return !mb_x ? (vp7 ? DC_128_PRED : DC_129_PRED) : mode; case TM_VP8_PRED: return check_tm_pred4x4_mode(mode, mb_x, mb_y, vp7); case DC_PRED: /* 4x4 DC doesn't use the same "H.264-style" exceptions * as 16x16/8x8 DC */ case DIAG_DOWN_RIGHT_PRED: case VERT_RIGHT_PRED: case HOR_DOWN_PRED: if (!mb_y || !mb_x) *copy_buf = 1; return mode; } return mode; } static av_always_inline void intra_predict(VP8Context *s, VP8ThreadData *td, uint8_t *const dst[3], VP8Macroblock *mb, int mb_x, int mb_y, int is_vp7) { int x, y, mode, nnz; uint32_t tr; /* for the first row, we need to run xchg_mb_border to init the top edge * to 127 otherwise, skip it if we aren't going to deblock */ if (mb_y && (s->deblock_filter || !mb_y) && td->thread_nr == 0) xchg_mb_border(s->top_border[mb_x + 1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width, s->filter.simple, 1); if (mb->mode < MODE_I4x4) { mode = check_intra_pred8x8_mode_emuedge(mb->mode, mb_x, mb_y, is_vp7); s->hpc.pred16x16[mode](dst[0], s->linesize); } else { uint8_t *ptr = dst[0]; const uint8_t *intra4x4 = mb->intra4x4_pred_mode_mb; const uint8_t lo = is_vp7 ? 128 : 127; const uint8_t hi = is_vp7 ? 128 : 129; const uint8_t tr_top[4] = { lo, lo, lo, lo }; // all blocks on the right edge of the macroblock use bottom edge // the top macroblock for their topright edge const uint8_t *tr_right = ptr - s->linesize + 16; // if we're on the right edge of the frame, said edge is extended // from the top macroblock if (mb_y && mb_x == s->mb_width - 1) { tr = tr_right[-1] * 0x01010101u; tr_right = (uint8_t *) &tr; } if (mb->skip) AV_ZERO128(td->non_zero_count_cache); for (y = 0; y < 4; y++) { const uint8_t *topright = ptr + 4 - s->linesize; for (x = 0; x < 4; x++) { int copy = 0; ptrdiff_t linesize = s->linesize; uint8_t *dst = ptr + 4 * x; LOCAL_ALIGNED(4, uint8_t, copy_dst, [5 * 8]); if ((y == 0 || x == 3) && mb_y == 0) { topright = tr_top; } else if (x == 3) topright = tr_right; mode = check_intra_pred4x4_mode_emuedge(intra4x4[x], mb_x + x, mb_y + y, ©, is_vp7); if (copy) { dst = copy_dst + 12; linesize = 8; if (!(mb_y + y)) { copy_dst[3] = lo; AV_WN32A(copy_dst + 4, lo * 0x01010101U); } else { AV_COPY32(copy_dst + 4, ptr + 4 * x - s->linesize); if (!(mb_x + x)) { copy_dst[3] = hi; } else { copy_dst[3] = ptr[4 * x - s->linesize - 1]; } } if (!(mb_x + x)) { copy_dst[11] = copy_dst[19] = copy_dst[27] = copy_dst[35] = hi; } else { copy_dst[11] = ptr[4 * x - 1]; copy_dst[19] = ptr[4 * x + s->linesize - 1]; copy_dst[27] = ptr[4 * x + s->linesize * 2 - 1]; copy_dst[35] = ptr[4 * x + s->linesize * 3 - 1]; } } s->hpc.pred4x4[mode](dst, topright, linesize); if (copy) { AV_COPY32(ptr + 4 * x, copy_dst + 12); AV_COPY32(ptr + 4 * x + s->linesize, copy_dst + 20); AV_COPY32(ptr + 4 * x + s->linesize * 2, copy_dst + 28); AV_COPY32(ptr + 4 * x + s->linesize * 3, copy_dst + 36); } nnz = td->non_zero_count_cache[y][x]; if (nnz) { if (nnz == 1) s->vp8dsp.vp8_idct_dc_add(ptr + 4 * x, td->block[y][x], s->linesize); else s->vp8dsp.vp8_idct_add(ptr + 4 * x, td->block[y][x], s->linesize); } topright += 4; } ptr += 4 * s->linesize; intra4x4 += 4; } } mode = check_intra_pred8x8_mode_emuedge(mb->chroma_pred_mode, mb_x, mb_y, is_vp7); s->hpc.pred8x8[mode](dst[1], s->uvlinesize); s->hpc.pred8x8[mode](dst[2], s->uvlinesize); if (mb_y && (s->deblock_filter || !mb_y) && td->thread_nr == 0) xchg_mb_border(s->top_border[mb_x + 1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width, s->filter.simple, 0); } static const uint8_t subpel_idx[3][8] = { { 0, 1, 2, 1, 2, 1, 2, 1 }, // nr. of left extra pixels, // also function pointer index { 0, 3, 5, 3, 5, 3, 5, 3 }, // nr. of extra pixels required { 0, 2, 3, 2, 3, 2, 3, 2 }, // nr. of right extra pixels }; /** * luma MC function * * @param s VP8 decoding context * @param dst target buffer for block data at block position * @param ref reference picture buffer at origin (0, 0) * @param mv motion vector (relative to block position) to get pixel data from * @param x_off horizontal position of block from origin (0, 0) * @param y_off vertical position of block from origin (0, 0) * @param block_w width of block (16, 8 or 4) * @param block_h height of block (always same as block_w) * @param width width of src/dst plane data * @param height height of src/dst plane data * @param linesize size of a single line of plane data, including padding * @param mc_func motion compensation function pointers (bilinear or sixtap MC) */ static av_always_inline void vp8_mc_luma(VP8Context *s, VP8ThreadData *td, uint8_t *dst, const ThreadFrame *ref, const VP8mv *mv, int x_off, int y_off, int block_w, int block_h, int width, int height, ptrdiff_t linesize, vp8_mc_func mc_func[3][3]) { const uint8_t *src = ref->f->data[0]; if (AV_RN32A(mv)) { ptrdiff_t src_linesize = linesize; int mx = (mv->x * 2) & 7, mx_idx = subpel_idx[0][mx]; int my = (mv->y * 2) & 7, my_idx = subpel_idx[0][my]; x_off += mv->x >> 2; y_off += mv->y >> 2; // edge emulation ff_thread_await_progress(ref, (3 + y_off + block_h + subpel_idx[2][my]) >> 4, 0); src += y_off * linesize + x_off; if (x_off < mx_idx || x_off >= width - block_w - subpel_idx[2][mx] || y_off < my_idx || y_off >= height - block_h - subpel_idx[2][my]) { s->vdsp.emulated_edge_mc(td->edge_emu_buffer, src - my_idx * linesize - mx_idx, EDGE_EMU_LINESIZE, linesize, block_w + subpel_idx[1][mx], block_h + subpel_idx[1][my], x_off - mx_idx, y_off - my_idx, width, height); src = td->edge_emu_buffer + mx_idx + EDGE_EMU_LINESIZE * my_idx; src_linesize = EDGE_EMU_LINESIZE; } mc_func[my_idx][mx_idx](dst, linesize, src, src_linesize, block_h, mx, my); } else { ff_thread_await_progress(ref, (3 + y_off + block_h) >> 4, 0); mc_func[0][0](dst, linesize, src + y_off * linesize + x_off, linesize, block_h, 0, 0); } } /** * chroma MC function * * @param s VP8 decoding context * @param dst1 target buffer for block data at block position (U plane) * @param dst2 target buffer for block data at block position (V plane) * @param ref reference picture buffer at origin (0, 0) * @param mv motion vector (relative to block position) to get pixel data from * @param x_off horizontal position of block from origin (0, 0) * @param y_off vertical position of block from origin (0, 0) * @param block_w width of block (16, 8 or 4) * @param block_h height of block (always same as block_w) * @param width width of src/dst plane data * @param height height of src/dst plane data * @param linesize size of a single line of plane data, including padding * @param mc_func motion compensation function pointers (bilinear or sixtap MC) */ static av_always_inline void vp8_mc_chroma(VP8Context *s, VP8ThreadData *td, uint8_t *dst1, uint8_t *dst2, const ThreadFrame *ref, const VP8mv *mv, int x_off, int y_off, int block_w, int block_h, int width, int height, ptrdiff_t linesize, vp8_mc_func mc_func[3][3]) { const uint8_t *src1 = ref->f->data[1], *src2 = ref->f->data[2]; if (AV_RN32A(mv)) { int mx = mv->x & 7, mx_idx = subpel_idx[0][mx]; int my = mv->y & 7, my_idx = subpel_idx[0][my]; x_off += mv->x >> 3; y_off += mv->y >> 3; // edge emulation src1 += y_off * linesize + x_off; src2 += y_off * linesize + x_off; ff_thread_await_progress(ref, (3 + y_off + block_h + subpel_idx[2][my]) >> 3, 0); if (x_off < mx_idx || x_off >= width - block_w - subpel_idx[2][mx] || y_off < my_idx || y_off >= height - block_h - subpel_idx[2][my]) { s->vdsp.emulated_edge_mc(td->edge_emu_buffer, src1 - my_idx * linesize - mx_idx, EDGE_EMU_LINESIZE, linesize, block_w + subpel_idx[1][mx], block_h + subpel_idx[1][my], x_off - mx_idx, y_off - my_idx, width, height); src1 = td->edge_emu_buffer + mx_idx + EDGE_EMU_LINESIZE * my_idx; mc_func[my_idx][mx_idx](dst1, linesize, src1, EDGE_EMU_LINESIZE, block_h, mx, my); s->vdsp.emulated_edge_mc(td->edge_emu_buffer, src2 - my_idx * linesize - mx_idx, EDGE_EMU_LINESIZE, linesize, block_w + subpel_idx[1][mx], block_h + subpel_idx[1][my], x_off - mx_idx, y_off - my_idx, width, height); src2 = td->edge_emu_buffer + mx_idx + EDGE_EMU_LINESIZE * my_idx; mc_func[my_idx][mx_idx](dst2, linesize, src2, EDGE_EMU_LINESIZE, block_h, mx, my); } else { mc_func[my_idx][mx_idx](dst1, linesize, src1, linesize, block_h, mx, my); mc_func[my_idx][mx_idx](dst2, linesize, src2, linesize, block_h, mx, my); } } else { ff_thread_await_progress(ref, (3 + y_off + block_h) >> 3, 0); mc_func[0][0](dst1, linesize, src1 + y_off * linesize + x_off, linesize, block_h, 0, 0); mc_func[0][0](dst2, linesize, src2 + y_off * linesize + x_off, linesize, block_h, 0, 0); } } static av_always_inline void vp8_mc_part(VP8Context *s, VP8ThreadData *td, uint8_t *const dst[3], const ThreadFrame *ref_frame, int x_off, int y_off, int bx_off, int by_off, int block_w, int block_h, int width, int height, const VP8mv *mv) { VP8mv uvmv = *mv; /* Y */ vp8_mc_luma(s, td, dst[0] + by_off * s->linesize + bx_off, ref_frame, mv, x_off + bx_off, y_off + by_off, block_w, block_h, width, height, s->linesize, s->put_pixels_tab[block_w == 8]); /* U/V */ if (s->profile == 3) { /* this block only applies VP8; it is safe to check * only the profile, as VP7 profile <= 1 */ uvmv.x &= ~7; uvmv.y &= ~7; } x_off >>= 1; y_off >>= 1; bx_off >>= 1; by_off >>= 1; width >>= 1; height >>= 1; block_w >>= 1; block_h >>= 1; vp8_mc_chroma(s, td, dst[1] + by_off * s->uvlinesize + bx_off, dst[2] + by_off * s->uvlinesize + bx_off, ref_frame, &uvmv, x_off + bx_off, y_off + by_off, block_w, block_h, width, height, s->uvlinesize, s->put_pixels_tab[1 + (block_w == 4)]); } /* Fetch pixels for estimated mv 4 macroblocks ahead. * Optimized for 64-byte cache lines. Inspired by ffh264 prefetch_motion. */ static av_always_inline void prefetch_motion(const VP8Context *s, const VP8Macroblock *mb, int mb_x, int mb_y, int mb_xy, int ref) { /* Don't prefetch refs that haven't been used very often this frame. */ if (s->ref_count[ref - 1] > (mb_xy >> 5)) { int x_off = mb_x << 4, y_off = mb_y << 4; int mx = (mb->mv.x >> 2) + x_off + 8; int my = (mb->mv.y >> 2) + y_off; uint8_t **src = s->framep[ref]->tf.f->data; int off = mx + (my + (mb_x & 3) * 4) * s->linesize + 64; /* For threading, a ff_thread_await_progress here might be useful, but * it actually slows down the decoder. Since a bad prefetch doesn't * generate bad decoder output, we don't run it here. */ s->vdsp.prefetch(src[0] + off, s->linesize, 4); off = (mx >> 1) + ((my >> 1) + (mb_x & 7)) * s->uvlinesize + 64; s->vdsp.prefetch(src[1] + off, src[2] - src[1], 2); } } /** * Apply motion vectors to prediction buffer, chapter 18. */ static av_always_inline void inter_predict(VP8Context *s, VP8ThreadData *td, uint8_t *const dst[3], VP8Macroblock *mb, int mb_x, int mb_y) { int x_off = mb_x << 4, y_off = mb_y << 4; int width = 16 * s->mb_width, height = 16 * s->mb_height; const ThreadFrame *ref = &s->framep[mb->ref_frame]->tf; const VP8mv *bmv = mb->bmv; switch (mb->partitioning) { case VP8_SPLITMVMODE_NONE: vp8_mc_part(s, td, dst, ref, x_off, y_off, 0, 0, 16, 16, width, height, &mb->mv); break; case VP8_SPLITMVMODE_4x4: { int x, y; VP8mv uvmv; /* Y */ for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { vp8_mc_luma(s, td, dst[0] + 4 * y * s->linesize + x * 4, ref, &bmv[4 * y + x], 4 * x + x_off, 4 * y + y_off, 4, 4, width, height, s->linesize, s->put_pixels_tab[2]); } } /* U/V */ x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1; for (y = 0; y < 2; y++) { for (x = 0; x < 2; x++) { uvmv.x = mb->bmv[2 * y * 4 + 2 * x ].x + mb->bmv[2 * y * 4 + 2 * x + 1].x + mb->bmv[(2 * y + 1) * 4 + 2 * x ].x + mb->bmv[(2 * y + 1) * 4 + 2 * x + 1].x; uvmv.y = mb->bmv[2 * y * 4 + 2 * x ].y + mb->bmv[2 * y * 4 + 2 * x + 1].y + mb->bmv[(2 * y + 1) * 4 + 2 * x ].y + mb->bmv[(2 * y + 1) * 4 + 2 * x + 1].y; uvmv.x = (uvmv.x + 2 + FF_SIGNBIT(uvmv.x)) >> 2; uvmv.y = (uvmv.y + 2 + FF_SIGNBIT(uvmv.y)) >> 2; if (s->profile == 3) { uvmv.x &= ~7; uvmv.y &= ~7; } vp8_mc_chroma(s, td, dst[1] + 4 * y * s->uvlinesize + x * 4, dst[2] + 4 * y * s->uvlinesize + x * 4, ref, &uvmv, 4 * x + x_off, 4 * y + y_off, 4, 4, width, height, s->uvlinesize, s->put_pixels_tab[2]); } } break; } case VP8_SPLITMVMODE_16x8: vp8_mc_part(s, td, dst, ref, x_off, y_off, 0, 0, 16, 8, width, height, &bmv[0]); vp8_mc_part(s, td, dst, ref, x_off, y_off, 0, 8, 16, 8, width, height, &bmv[1]); break; case VP8_SPLITMVMODE_8x16: vp8_mc_part(s, td, dst, ref, x_off, y_off, 0, 0, 8, 16, width, height, &bmv[0]); vp8_mc_part(s, td, dst, ref, x_off, y_off, 8, 0, 8, 16, width, height, &bmv[1]); break; case VP8_SPLITMVMODE_8x8: vp8_mc_part(s, td, dst, ref, x_off, y_off, 0, 0, 8, 8, width, height, &bmv[0]); vp8_mc_part(s, td, dst, ref, x_off, y_off, 8, 0, 8, 8, width, height, &bmv[1]); vp8_mc_part(s, td, dst, ref, x_off, y_off, 0, 8, 8, 8, width, height, &bmv[2]); vp8_mc_part(s, td, dst, ref, x_off, y_off, 8, 8, 8, 8, width, height, &bmv[3]); break; } } static av_always_inline void idct_mb(VP8Context *s, VP8ThreadData *td, uint8_t *const dst[3], const VP8Macroblock *mb) { int x, y, ch; if (mb->mode != MODE_I4x4) { uint8_t *y_dst = dst[0]; for (y = 0; y < 4; y++) { uint32_t nnz4 = AV_RL32(td->non_zero_count_cache[y]); if (nnz4) { if (nnz4 & ~0x01010101) { for (x = 0; x < 4; x++) { if ((uint8_t) nnz4 == 1) s->vp8dsp.vp8_idct_dc_add(y_dst + 4 * x, td->block[y][x], s->linesize); else if ((uint8_t) nnz4 > 1) s->vp8dsp.vp8_idct_add(y_dst + 4 * x, td->block[y][x], s->linesize); nnz4 >>= 8; if (!nnz4) break; } } else { s->vp8dsp.vp8_idct_dc_add4y(y_dst, td->block[y], s->linesize); } } y_dst += 4 * s->linesize; } } for (ch = 0; ch < 2; ch++) { uint32_t nnz4 = AV_RL32(td->non_zero_count_cache[4 + ch]); if (nnz4) { uint8_t *ch_dst = dst[1 + ch]; if (nnz4 & ~0x01010101) { for (y = 0; y < 2; y++) { for (x = 0; x < 2; x++) { if ((uint8_t) nnz4 == 1) s->vp8dsp.vp8_idct_dc_add(ch_dst + 4 * x, td->block[4 + ch][(y << 1) + x], s->uvlinesize); else if ((uint8_t) nnz4 > 1) s->vp8dsp.vp8_idct_add(ch_dst + 4 * x, td->block[4 + ch][(y << 1) + x], s->uvlinesize); nnz4 >>= 8; if (!nnz4) goto chroma_idct_end; } ch_dst += 4 * s->uvlinesize; } } else { s->vp8dsp.vp8_idct_dc_add4uv(ch_dst, td->block[4 + ch], s->uvlinesize); } } chroma_idct_end: ; } } static av_always_inline void filter_level_for_mb(const VP8Context *s, const VP8Macroblock *mb, VP8FilterStrength *f, int is_vp7) { int interior_limit, filter_level; if (s->segmentation.enabled) { filter_level = s->segmentation.filter_level[mb->segment]; if (!s->segmentation.absolute_vals) filter_level += s->filter.level; } else filter_level = s->filter.level; if (s->lf_delta.enabled) { filter_level += s->lf_delta.ref[mb->ref_frame]; filter_level += s->lf_delta.mode[mb->mode]; } filter_level = av_clip_uintp2(filter_level, 6); interior_limit = filter_level; if (s->filter.sharpness) { interior_limit >>= (s->filter.sharpness + 3) >> 2; interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness); } interior_limit = FFMAX(interior_limit, 1); f->filter_level = filter_level; f->inner_limit = interior_limit; f->inner_filter = is_vp7 || !mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT; } static av_always_inline void filter_mb(const VP8Context *s, uint8_t *const dst[3], const VP8FilterStrength *f, int mb_x, int mb_y, int is_vp7) { int mbedge_lim, bedge_lim_y, bedge_lim_uv, hev_thresh; int filter_level = f->filter_level; int inner_limit = f->inner_limit; int inner_filter = f->inner_filter; ptrdiff_t linesize = s->linesize; ptrdiff_t uvlinesize = s->uvlinesize; static const uint8_t hev_thresh_lut[2][64] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 } }; if (!filter_level) return; if (is_vp7) { bedge_lim_y = filter_level; bedge_lim_uv = filter_level * 2; mbedge_lim = filter_level + 2; } else { bedge_lim_y = bedge_lim_uv = filter_level * 2 + inner_limit; mbedge_lim = bedge_lim_y + 4; } hev_thresh = hev_thresh_lut[s->keyframe][filter_level]; if (mb_x) { s->vp8dsp.vp8_h_loop_filter16y(dst[0], linesize, mbedge_lim, inner_limit, hev_thresh); s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], uvlinesize, mbedge_lim, inner_limit, hev_thresh); } #define H_LOOP_FILTER_16Y_INNER(cond) \ if (cond && inner_filter) { \ s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 4, linesize, \ bedge_lim_y, inner_limit, \ hev_thresh); \ s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 8, linesize, \ bedge_lim_y, inner_limit, \ hev_thresh); \ s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0] + 12, linesize, \ bedge_lim_y, inner_limit, \ hev_thresh); \ s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4, \ uvlinesize, bedge_lim_uv, \ inner_limit, hev_thresh); \ } H_LOOP_FILTER_16Y_INNER(!is_vp7) if (mb_y) { s->vp8dsp.vp8_v_loop_filter16y(dst[0], linesize, mbedge_lim, inner_limit, hev_thresh); s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], uvlinesize, mbedge_lim, inner_limit, hev_thresh); } if (inner_filter) { s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 4 * linesize, linesize, bedge_lim_y, inner_limit, hev_thresh); s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 8 * linesize, linesize, bedge_lim_y, inner_limit, hev_thresh); s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0] + 12 * linesize, linesize, bedge_lim_y, inner_limit, hev_thresh); s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * uvlinesize, dst[2] + 4 * uvlinesize, uvlinesize, bedge_lim_uv, inner_limit, hev_thresh); } H_LOOP_FILTER_16Y_INNER(is_vp7) } static av_always_inline void filter_mb_simple(const VP8Context *s, uint8_t *dst, const VP8FilterStrength *f, int mb_x, int mb_y) { int mbedge_lim, bedge_lim; int filter_level = f->filter_level; int inner_limit = f->inner_limit; int inner_filter = f->inner_filter; ptrdiff_t linesize = s->linesize; if (!filter_level) return; bedge_lim = 2 * filter_level + inner_limit; mbedge_lim = bedge_lim + 4; if (mb_x) s->vp8dsp.vp8_h_loop_filter_simple(dst, linesize, mbedge_lim); if (inner_filter) { s->vp8dsp.vp8_h_loop_filter_simple(dst + 4, linesize, bedge_lim); s->vp8dsp.vp8_h_loop_filter_simple(dst + 8, linesize, bedge_lim); s->vp8dsp.vp8_h_loop_filter_simple(dst + 12, linesize, bedge_lim); } if (mb_y) s->vp8dsp.vp8_v_loop_filter_simple(dst, linesize, mbedge_lim); if (inner_filter) { s->vp8dsp.vp8_v_loop_filter_simple(dst + 4 * linesize, linesize, bedge_lim); s->vp8dsp.vp8_v_loop_filter_simple(dst + 8 * linesize, linesize, bedge_lim); s->vp8dsp.vp8_v_loop_filter_simple(dst + 12 * linesize, linesize, bedge_lim); } } #define MARGIN (16 << 2) static av_always_inline int vp78_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *curframe, const VP8Frame *prev_frame, int is_vp7) { VP8Context *s = avctx->priv_data; int mb_x, mb_y; s->mv_bounds.mv_min.y = -MARGIN; s->mv_bounds.mv_max.y = ((s->mb_height - 1) << 6) + MARGIN; for (mb_y = 0; mb_y < s->mb_height; mb_y++) { VP8Macroblock *mb = s->macroblocks_base + ((s->mb_width + 1) * (mb_y + 1) + 1); int mb_xy = mb_y * s->mb_width; AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED * 0x01010101); s->mv_bounds.mv_min.x = -MARGIN; s->mv_bounds.mv_max.x = ((s->mb_width - 1) << 6) + MARGIN; for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) { if (vpx_rac_is_end(&s->c)) { return AVERROR_INVALIDDATA; } if (mb_y == 0) AV_WN32A((mb - s->mb_width - 1)->intra4x4_pred_mode_top, DC_PRED * 0x01010101); decode_mb_mode(s, &s->mv_bounds, mb, mb_x, mb_y, curframe->seg_map->data + mb_xy, prev_frame && prev_frame->seg_map ? prev_frame->seg_map->data + mb_xy : NULL, 1, is_vp7); s->mv_bounds.mv_min.x -= 64; s->mv_bounds.mv_max.x -= 64; } s->mv_bounds.mv_min.y -= 64; s->mv_bounds.mv_max.y -= 64; } return 0; } static int vp7_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *cur_frame, const VP8Frame *prev_frame) { return vp78_decode_mv_mb_modes(avctx, cur_frame, prev_frame, IS_VP7); } static int vp8_decode_mv_mb_modes(AVCodecContext *avctx, VP8Frame *cur_frame, const VP8Frame *prev_frame) { return vp78_decode_mv_mb_modes(avctx, cur_frame, prev_frame, IS_VP8); } #if HAVE_THREADS #define check_thread_pos(td, otd, mb_x_check, mb_y_check) \ do { \ int tmp = (mb_y_check << 16) | (mb_x_check & 0xFFFF); \ if (atomic_load(&otd->thread_mb_pos) < tmp) { \ pthread_mutex_lock(&otd->lock); \ atomic_store(&td->wait_mb_pos, tmp); \ do { \ if (atomic_load(&otd->thread_mb_pos) >= tmp) \ break; \ pthread_cond_wait(&otd->cond, &otd->lock); \ } while (1); \ atomic_store(&td->wait_mb_pos, INT_MAX); \ pthread_mutex_unlock(&otd->lock); \ } \ } while (0) #define update_pos(td, mb_y, mb_x) \ do { \ int pos = (mb_y << 16) | (mb_x & 0xFFFF); \ int sliced_threading = (avctx->active_thread_type == FF_THREAD_SLICE) && \ (num_jobs > 1); \ int is_null = !next_td || !prev_td; \ int pos_check = (is_null) ? 1 : \ (next_td != td && pos >= atomic_load(&next_td->wait_mb_pos)) || \ (prev_td != td && pos >= atomic_load(&prev_td->wait_mb_pos)); \ atomic_store(&td->thread_mb_pos, pos); \ if (sliced_threading && pos_check) { \ pthread_mutex_lock(&td->lock); \ pthread_cond_broadcast(&td->cond); \ pthread_mutex_unlock(&td->lock); \ } \ } while (0) #else #define check_thread_pos(td, otd, mb_x_check, mb_y_check) while(0) #define update_pos(td, mb_y, mb_x) while(0) #endif static av_always_inline int decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr, int is_vp7) { VP8Context *s = avctx->priv_data; VP8ThreadData *prev_td, *next_td, *td = &s->thread_data[threadnr]; int mb_y = atomic_load(&td->thread_mb_pos) >> 16; int mb_x, mb_xy = mb_y * s->mb_width; int num_jobs = s->num_jobs; const VP8Frame *prev_frame = s->prev_frame; VP8Frame *curframe = s->curframe; VPXRangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions - 1)]; VP8Macroblock *mb; uint8_t *dst[3] = { curframe->tf.f->data[0] + 16 * mb_y * s->linesize, curframe->tf.f->data[1] + 8 * mb_y * s->uvlinesize, curframe->tf.f->data[2] + 8 * mb_y * s->uvlinesize }; if (vpx_rac_is_end(c)) return AVERROR_INVALIDDATA; if (mb_y == 0) prev_td = td; else prev_td = &s->thread_data[(jobnr + num_jobs - 1) % num_jobs]; if (mb_y == s->mb_height - 1) next_td = td; else next_td = &s->thread_data[(jobnr + 1) % num_jobs]; if (s->mb_layout == 1) mb = s->macroblocks_base + ((s->mb_width + 1) * (mb_y + 1) + 1); else { // Make sure the previous frame has read its segmentation map, // if we re-use the same map. if (prev_frame && s->segmentation.enabled && !s->segmentation.update_map) ff_thread_await_progress(&prev_frame->tf, mb_y, 0); mb = s->macroblocks + (s->mb_height - mb_y - 1) * 2; memset(mb - 1, 0, sizeof(*mb)); // zero left macroblock AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED * 0x01010101); } if (!is_vp7 || mb_y == 0) memset(td->left_nnz, 0, sizeof(td->left_nnz)); td->mv_bounds.mv_min.x = -MARGIN; td->mv_bounds.mv_max.x = ((s->mb_width - 1) << 6) + MARGIN; for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) { if (vpx_rac_is_end(c)) return AVERROR_INVALIDDATA; // Wait for previous thread to read mb_x+2, and reach mb_y-1. if (prev_td != td) { if (threadnr != 0) { check_thread_pos(td, prev_td, mb_x + (is_vp7 ? 2 : 1), mb_y - (is_vp7 ? 2 : 1)); } else { check_thread_pos(td, prev_td, mb_x + (is_vp7 ? 2 : 1) + s->mb_width + 3, mb_y - (is_vp7 ? 2 : 1)); } } s->vdsp.prefetch(dst[0] + (mb_x & 3) * 4 * s->linesize + 64, s->linesize, 4); s->vdsp.prefetch(dst[1] + (mb_x & 7) * s->uvlinesize + 64, dst[2] - dst[1], 2); if (!s->mb_layout) decode_mb_mode(s, &td->mv_bounds, mb, mb_x, mb_y, curframe->seg_map->data + mb_xy, prev_frame && prev_frame->seg_map ? prev_frame->seg_map->data + mb_xy : NULL, 0, is_vp7); prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP8_FRAME_PREVIOUS); if (!mb->skip) decode_mb_coeffs(s, td, c, mb, s->top_nnz[mb_x], td->left_nnz, is_vp7); if (mb->mode <= MODE_I4x4) intra_predict(s, td, dst, mb, mb_x, mb_y, is_vp7); else inter_predict(s, td, dst, mb, mb_x, mb_y); prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP8_FRAME_GOLDEN); if (!mb->skip) { idct_mb(s, td, dst, mb); } else { AV_ZERO64(td->left_nnz); AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned /* Reset DC block predictors if they would exist * if the mb had coefficients */ if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) { td->left_nnz[8] = 0; s->top_nnz[mb_x][8] = 0; } } if (s->deblock_filter) filter_level_for_mb(s, mb, &td->filter_strength[mb_x], is_vp7); if (s->deblock_filter && num_jobs != 1 && threadnr == num_jobs - 1) { if (s->filter.simple) backup_mb_border(s->top_border[mb_x + 1], dst[0], NULL, NULL, s->linesize, 0, 1); else backup_mb_border(s->top_border[mb_x + 1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0); } prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP8_FRAME_ALTREF); dst[0] += 16; dst[1] += 8; dst[2] += 8; td->mv_bounds.mv_min.x -= 64; td->mv_bounds.mv_max.x -= 64; if (mb_x == s->mb_width + 1) { update_pos(td, mb_y, s->mb_width + 3); } else { update_pos(td, mb_y, mb_x); } } return 0; } static int vp7_decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr) { return decode_mb_row_no_filter(avctx, tdata, jobnr, threadnr, 1); } static int vp8_decode_mb_row_no_filter(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr) { return decode_mb_row_no_filter(avctx, tdata, jobnr, threadnr, 0); } static av_always_inline void filter_mb_row(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr, int is_vp7) { VP8Context *s = avctx->priv_data; VP8ThreadData *td = &s->thread_data[threadnr]; int mb_x, mb_y = atomic_load(&td->thread_mb_pos) >> 16, num_jobs = s->num_jobs; AVFrame *curframe = s->curframe->tf.f; VP8Macroblock *mb; VP8ThreadData *prev_td, *next_td; uint8_t *dst[3] = { curframe->data[0] + 16 * mb_y * s->linesize, curframe->data[1] + 8 * mb_y * s->uvlinesize, curframe->data[2] + 8 * mb_y * s->uvlinesize }; if (s->mb_layout == 1) mb = s->macroblocks_base + ((s->mb_width + 1) * (mb_y + 1) + 1); else mb = s->macroblocks + (s->mb_height - mb_y - 1) * 2; if (mb_y == 0) prev_td = td; else prev_td = &s->thread_data[(jobnr + num_jobs - 1) % num_jobs]; if (mb_y == s->mb_height - 1) next_td = td; else next_td = &s->thread_data[(jobnr + 1) % num_jobs]; for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb++) { const VP8FilterStrength *f = &td->filter_strength[mb_x]; if (prev_td != td) check_thread_pos(td, prev_td, (mb_x + 1) + (s->mb_width + 3), mb_y - 1); if (next_td != td) if (next_td != &s->thread_data[0]) check_thread_pos(td, next_td, mb_x + 1, mb_y + 1); if (num_jobs == 1) { if (s->filter.simple) backup_mb_border(s->top_border[mb_x + 1], dst[0], NULL, NULL, s->linesize, 0, 1); else backup_mb_border(s->top_border[mb_x + 1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0); } if (s->filter.simple) filter_mb_simple(s, dst[0], f, mb_x, mb_y); else filter_mb(s, dst, f, mb_x, mb_y, is_vp7); dst[0] += 16; dst[1] += 8; dst[2] += 8; update_pos(td, mb_y, (s->mb_width + 3) + mb_x); } } static void vp7_filter_mb_row(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr) { filter_mb_row(avctx, tdata, jobnr, threadnr, 1); } static void vp8_filter_mb_row(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr) { filter_mb_row(avctx, tdata, jobnr, threadnr, 0); } static av_always_inline int vp78_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr, int is_vp7) { const VP8Context *s = avctx->priv_data; VP8ThreadData *td = &s->thread_data[jobnr]; VP8ThreadData *next_td = NULL, *prev_td = NULL; VP8Frame *curframe = s->curframe; int mb_y, num_jobs = s->num_jobs; int ret; td->thread_nr = threadnr; td->mv_bounds.mv_min.y = -MARGIN - 64 * threadnr; td->mv_bounds.mv_max.y = ((s->mb_height - 1) << 6) + MARGIN - 64 * threadnr; for (mb_y = jobnr; mb_y < s->mb_height; mb_y += num_jobs) { atomic_store(&td->thread_mb_pos, mb_y << 16); ret = s->decode_mb_row_no_filter(avctx, tdata, jobnr, threadnr); if (ret < 0) { update_pos(td, s->mb_height, INT_MAX & 0xFFFF); return ret; } if (s->deblock_filter) s->filter_mb_row(avctx, tdata, jobnr, threadnr); update_pos(td, mb_y, INT_MAX & 0xFFFF); td->mv_bounds.mv_min.y -= 64 * num_jobs; td->mv_bounds.mv_max.y -= 64 * num_jobs; if (avctx->active_thread_type == FF_THREAD_FRAME) ff_thread_report_progress(&curframe->tf, mb_y, 0); } return 0; } static int vp7_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr) { return vp78_decode_mb_row_sliced(avctx, tdata, jobnr, threadnr, IS_VP7); } static int vp8_decode_mb_row_sliced(AVCodecContext *avctx, void *tdata, int jobnr, int threadnr) { return vp78_decode_mb_row_sliced(avctx, tdata, jobnr, threadnr, IS_VP8); } static av_always_inline int vp78_decode_frame(AVCodecContext *avctx, AVFrame *rframe, int *got_frame, const AVPacket *avpkt, int is_vp7) { VP8Context *s = avctx->priv_data; int ret, i, referenced, num_jobs; enum AVDiscard skip_thresh; VP8Frame *av_uninit(curframe), *prev_frame; if (is_vp7) ret = vp7_decode_frame_header(s, avpkt->data, avpkt->size); else ret = vp8_decode_frame_header(s, avpkt->data, avpkt->size); if (ret < 0) goto err; if (s->actually_webp) { // avctx->pix_fmt already set in caller. } else if (!is_vp7 && s->pix_fmt == AV_PIX_FMT_NONE) { s->pix_fmt = get_pixel_format(s); if (s->pix_fmt < 0) { ret = AVERROR(EINVAL); goto err; } avctx->pix_fmt = s->pix_fmt; } prev_frame = s->framep[VP8_FRAME_CURRENT]; referenced = s->update_last || s->update_golden == VP8_FRAME_CURRENT || s->update_altref == VP8_FRAME_CURRENT; skip_thresh = !referenced ? AVDISCARD_NONREF : !s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL; if (avctx->skip_frame >= skip_thresh) { s->invisible = 1; memcpy(&s->next_framep[0], &s->framep[0], sizeof(s->framep[0]) * 4); goto skip_decode; } s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh; // release no longer referenced frames for (i = 0; i < 5; i++) if (s->frames[i].tf.f->buf[0] && &s->frames[i] != prev_frame && &s->frames[i] != s->framep[VP8_FRAME_PREVIOUS] && &s->frames[i] != s->framep[VP8_FRAME_GOLDEN] && &s->frames[i] != s->framep[VP8_FRAME_ALTREF]) vp8_release_frame(s, &s->frames[i]); curframe = s->framep[VP8_FRAME_CURRENT] = vp8_find_free_buffer(s); if (!s->colorspace) avctx->colorspace = AVCOL_SPC_BT470BG; if (s->fullrange) avctx->color_range = AVCOL_RANGE_JPEG; else avctx->color_range = AVCOL_RANGE_MPEG; /* Given that arithmetic probabilities are updated every frame, it's quite * likely that the values we have on a random interframe are complete * junk if we didn't start decode on a keyframe. So just don't display * anything rather than junk. */ if (!s->keyframe && (!s->framep[VP8_FRAME_PREVIOUS] || !s->framep[VP8_FRAME_GOLDEN] || !s->framep[VP8_FRAME_ALTREF])) { av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n"); ret = AVERROR_INVALIDDATA; goto err; } curframe->tf.f->key_frame = s->keyframe; curframe->tf.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P; if ((ret = vp8_alloc_frame(s, curframe, referenced)) < 0) goto err; // check if golden and altref are swapped if (s->update_altref != VP8_FRAME_NONE) s->next_framep[VP8_FRAME_ALTREF] = s->framep[s->update_altref]; else s->next_framep[VP8_FRAME_ALTREF] = s->framep[VP8_FRAME_ALTREF]; if (s->update_golden != VP8_FRAME_NONE) s->next_framep[VP8_FRAME_GOLDEN] = s->framep[s->update_golden]; else s->next_framep[VP8_FRAME_GOLDEN] = s->framep[VP8_FRAME_GOLDEN]; if (s->update_last) s->next_framep[VP8_FRAME_PREVIOUS] = curframe; else s->next_framep[VP8_FRAME_PREVIOUS] = s->framep[VP8_FRAME_PREVIOUS]; s->next_framep[VP8_FRAME_CURRENT] = curframe; if (ffcodec(avctx->codec)->update_thread_context) ff_thread_finish_setup(avctx); if (avctx->hwaccel) { ret = avctx->hwaccel->start_frame(avctx, avpkt->data, avpkt->size); if (ret < 0) goto err; ret = avctx->hwaccel->decode_slice(avctx, avpkt->data, avpkt->size); if (ret < 0) goto err; ret = avctx->hwaccel->end_frame(avctx); if (ret < 0) goto err; } else { s->linesize = curframe->tf.f->linesize[0]; s->uvlinesize = curframe->tf.f->linesize[1]; memset(s->top_nnz, 0, s->mb_width * sizeof(*s->top_nnz)); /* Zero macroblock structures for top/top-left prediction * from outside the frame. */ if (!s->mb_layout) memset(s->macroblocks + s->mb_height * 2 - 1, 0, (s->mb_width + 1) * sizeof(*s->macroblocks)); if (!s->mb_layout && s->keyframe) memset(s->intra4x4_pred_mode_top, DC_PRED, s->mb_width * 4); memset(s->ref_count, 0, sizeof(s->ref_count)); if (s->mb_layout == 1) { // Make sure the previous frame has read its segmentation map, // if we re-use the same map. if (prev_frame && s->segmentation.enabled && !s->segmentation.update_map) ff_thread_await_progress(&prev_frame->tf, 1, 0); if (is_vp7) ret = vp7_decode_mv_mb_modes(avctx, curframe, prev_frame); else ret = vp8_decode_mv_mb_modes(avctx, curframe, prev_frame); if (ret < 0) goto err; } if (avctx->active_thread_type == FF_THREAD_FRAME) num_jobs = 1; else num_jobs = FFMIN(s->num_coeff_partitions, avctx->thread_count); s->num_jobs = num_jobs; s->curframe = curframe; s->prev_frame = prev_frame; s->mv_bounds.mv_min.y = -MARGIN; s->mv_bounds.mv_max.y = ((s->mb_height - 1) << 6) + MARGIN; for (i = 0; i < MAX_THREADS; i++) { VP8ThreadData *td = &s->thread_data[i]; atomic_init(&td->thread_mb_pos, 0); atomic_init(&td->wait_mb_pos, INT_MAX); } if (is_vp7) avctx->execute2(avctx, vp7_decode_mb_row_sliced, s->thread_data, NULL, num_jobs); else avctx->execute2(avctx, vp8_decode_mb_row_sliced, s->thread_data, NULL, num_jobs); } ff_thread_report_progress(&curframe->tf, INT_MAX, 0); memcpy(&s->framep[0], &s->next_framep[0], sizeof(s->framep[0]) * 4); skip_decode: // if future frames don't use the updated probabilities, // reset them to the values we saved if (!s->update_probabilities) s->prob[0] = s->prob[1]; if (!s->invisible) { if ((ret = av_frame_ref(rframe, curframe->tf.f)) < 0) return ret; *got_frame = 1; } return avpkt->size; err: memcpy(&s->next_framep[0], &s->framep[0], sizeof(s->framep[0]) * 4); return ret; } int ff_vp8_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt) { return vp78_decode_frame(avctx, frame, got_frame, avpkt, IS_VP8); } #if CONFIG_VP7_DECODER static int vp7_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt) { return vp78_decode_frame(avctx, frame, got_frame, avpkt, IS_VP7); } #endif /* CONFIG_VP7_DECODER */ av_cold int ff_vp8_decode_free(AVCodecContext *avctx) { VP8Context *s = avctx->priv_data; int i; vp8_decode_flush_impl(avctx, 1); for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++) av_frame_free(&s->frames[i].tf.f); return 0; } static av_cold int vp8_init_frames(VP8Context *s) { int i; for (i = 0; i < FF_ARRAY_ELEMS(s->frames); i++) { s->frames[i].tf.f = av_frame_alloc(); if (!s->frames[i].tf.f) return AVERROR(ENOMEM); } return 0; } static av_always_inline int vp78_decode_init(AVCodecContext *avctx, int is_vp7) { VP8Context *s = avctx->priv_data; int ret; s->avctx = avctx; s->vp7 = avctx->codec->id == AV_CODEC_ID_VP7; s->pix_fmt = AV_PIX_FMT_NONE; avctx->pix_fmt = AV_PIX_FMT_YUV420P; ff_videodsp_init(&s->vdsp, 8); ff_vp78dsp_init(&s->vp8dsp); if (CONFIG_VP7_DECODER && is_vp7) { ff_h264_pred_init(&s->hpc, AV_CODEC_ID_VP7, 8, 1); ff_vp7dsp_init(&s->vp8dsp); s->decode_mb_row_no_filter = vp7_decode_mb_row_no_filter; s->filter_mb_row = vp7_filter_mb_row; } else if (CONFIG_VP8_DECODER && !is_vp7) { ff_h264_pred_init(&s->hpc, AV_CODEC_ID_VP8, 8, 1); ff_vp8dsp_init(&s->vp8dsp); s->decode_mb_row_no_filter = vp8_decode_mb_row_no_filter; s->filter_mb_row = vp8_filter_mb_row; } /* does not change for VP8 */ memcpy(s->prob[0].scan, ff_zigzag_scan, sizeof(s->prob[0].scan)); if ((ret = vp8_init_frames(s)) < 0) { ff_vp8_decode_free(avctx); return ret; } return 0; } #if CONFIG_VP7_DECODER static int vp7_decode_init(AVCodecContext *avctx) { return vp78_decode_init(avctx, IS_VP7); } #endif /* CONFIG_VP7_DECODER */ av_cold int ff_vp8_decode_init(AVCodecContext *avctx) { return vp78_decode_init(avctx, IS_VP8); } #if CONFIG_VP8_DECODER #if HAVE_THREADS #define REBASE(pic) ((pic) ? (pic) - &s_src->frames[0] + &s->frames[0] : NULL) static int vp8_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { VP8Context *s = dst->priv_data, *s_src = src->priv_data; int i; if (s->macroblocks_base && (s_src->mb_width != s->mb_width || s_src->mb_height != s->mb_height)) { free_buffers(s); s->mb_width = s_src->mb_width; s->mb_height = s_src->mb_height; } s->pix_fmt = s_src->pix_fmt; s->prob[0] = s_src->prob[!s_src->update_probabilities]; s->segmentation = s_src->segmentation; s->lf_delta = s_src->lf_delta; memcpy(s->sign_bias, s_src->sign_bias, sizeof(s->sign_bias)); for (i = 0; i < FF_ARRAY_ELEMS(s_src->frames); i++) { if (s_src->frames[i].tf.f->buf[0]) { int ret = vp8_ref_frame(s, &s->frames[i], &s_src->frames[i]); if (ret < 0) return ret; } } s->framep[0] = REBASE(s_src->next_framep[0]); s->framep[1] = REBASE(s_src->next_framep[1]); s->framep[2] = REBASE(s_src->next_framep[2]); s->framep[3] = REBASE(s_src->next_framep[3]); return 0; } #endif /* HAVE_THREADS */ #endif /* CONFIG_VP8_DECODER */ #if CONFIG_VP7_DECODER const FFCodec ff_vp7_decoder = { .p.name = "vp7", CODEC_LONG_NAME("On2 VP7"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_VP7, .priv_data_size = sizeof(VP8Context), .init = vp7_decode_init, .close = ff_vp8_decode_free, FF_CODEC_DECODE_CB(vp7_decode_frame), .p.capabilities = AV_CODEC_CAP_DR1, .flush = vp8_decode_flush, }; #endif /* CONFIG_VP7_DECODER */ #if CONFIG_VP8_DECODER const FFCodec ff_vp8_decoder = { .p.name = "vp8", CODEC_LONG_NAME("On2 VP8"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_VP8, .priv_data_size = sizeof(VP8Context), .init = ff_vp8_decode_init, .close = ff_vp8_decode_free, FF_CODEC_DECODE_CB(ff_vp8_decode_frame), .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_SLICE_THREADS, .caps_internal = FF_CODEC_CAP_ALLOCATE_PROGRESS, .flush = vp8_decode_flush, UPDATE_THREAD_CONTEXT(vp8_decode_update_thread_context), .hw_configs = (const AVCodecHWConfigInternal *const []) { #if CONFIG_VP8_VAAPI_HWACCEL HWACCEL_VAAPI(vp8), #endif #if CONFIG_VP8_NVDEC_HWACCEL HWACCEL_NVDEC(vp8), #endif NULL }, }; #endif /* CONFIG_VP7_DECODER */