芝麻web文件管理V1.00
编辑当前文件:/home/qrafawbu/ffmpeg/libavcodec/vc1dsp.c
/* * VC-1 and WMV3 decoder - DSP functions * Copyright (c) 2006 Konstantin Shishkov * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * VC-1 and WMV3 decoder */ #include "config_components.h" #include "libavutil/avassert.h" #include "libavutil/common.h" #include "libavutil/intreadwrite.h" #include "h264chroma.h" #include "qpeldsp.h" #include "rnd_avg.h" #include "vc1dsp.h" #include "startcode.h" #include "vc1_common.h" /* Apply overlap transform to horizontal edge */ static void vc1_v_overlap_c(uint8_t *src, ptrdiff_t stride) { int i; int a, b, c, d; int d1, d2; int rnd = 1; for (i = 0; i < 8; i++) { a = src[-2 * stride]; b = src[-stride]; c = src[0]; d = src[stride]; d1 = (a - d + 3 + rnd) >> 3; d2 = (a - d + b - c + 4 - rnd) >> 3; src[-2 * stride] = a - d1; src[-stride] = av_clip_uint8(b - d2); src[0] = av_clip_uint8(c + d2); src[stride] = d + d1; src++; rnd = !rnd; } } /* Apply overlap transform to vertical edge */ static void vc1_h_overlap_c(uint8_t *src, ptrdiff_t stride) { int i; int a, b, c, d; int d1, d2; int rnd = 1; for (i = 0; i < 8; i++) { a = src[-2]; b = src[-1]; c = src[0]; d = src[1]; d1 = (a - d + 3 + rnd) >> 3; d2 = (a - d + b - c + 4 - rnd) >> 3; src[-2] = a - d1; src[-1] = av_clip_uint8(b - d2); src[0] = av_clip_uint8(c + d2); src[1] = d + d1; src += stride; rnd = !rnd; } } static void vc1_v_s_overlap_c(int16_t *top, int16_t *bottom) { int i; int a, b, c, d; int d1, d2; int rnd1 = 4, rnd2 = 3; for (i = 0; i < 8; i++) { a = top[48]; b = top[56]; c = bottom[0]; d = bottom[8]; d1 = a - d; d2 = a - d + b - c; top[48] = ((a * 8) - d1 + rnd1) >> 3; top[56] = ((b * 8) - d2 + rnd2) >> 3; bottom[0] = ((c * 8) + d2 + rnd1) >> 3; bottom[8] = ((d * 8) + d1 + rnd2) >> 3; bottom++; top++; rnd2 = 7 - rnd2; rnd1 = 7 - rnd1; } } static void vc1_h_s_overlap_c(int16_t *left, int16_t *right, ptrdiff_t left_stride, ptrdiff_t right_stride, int flags) { int i; int a, b, c, d; int d1, d2; int rnd1 = flags & 2 ? 3 : 4; int rnd2 = 7 - rnd1; for (i = 0; i < 8; i++) { a = left[6]; b = left[7]; c = right[0]; d = right[1]; d1 = a - d; d2 = a - d + b - c; left[6] = ((a * 8) - d1 + rnd1) >> 3; left[7] = ((b * 8) - d2 + rnd2) >> 3; right[0] = ((c * 8) + d2 + rnd1) >> 3; right[1] = ((d * 8) + d1 + rnd2) >> 3; right += right_stride; left += left_stride; if (flags & 1) { rnd2 = 7 - rnd2; rnd1 = 7 - rnd1; } } } /** * VC-1 in-loop deblocking filter for one line * @param src source block type * @param stride block stride * @param pq block quantizer * @return whether other 3 pairs should be filtered or not * @see 8.6 */ static av_always_inline int vc1_filter_line(uint8_t *src, ptrdiff_t stride, int pq) { int a0 = (2 * (src[-2 * stride] - src[1 * stride]) - 5 * (src[-1 * stride] - src[0 * stride]) + 4) >> 3; int a0_sign = a0 >> 31; /* Store sign */ a0 = (a0 ^ a0_sign) - a0_sign; /* a0 = FFABS(a0); */ if (a0 < pq) { int a1 = FFABS((2 * (src[-4 * stride] - src[-1 * stride]) - 5 * (src[-3 * stride] - src[-2 * stride]) + 4) >> 3); int a2 = FFABS((2 * (src[ 0 * stride] - src[ 3 * stride]) - 5 * (src[ 1 * stride] - src[ 2 * stride]) + 4) >> 3); if (a1 < a0 || a2 < a0) { int clip = src[-1 * stride] - src[0 * stride]; int clip_sign = clip >> 31; clip = ((clip ^ clip_sign) - clip_sign) >> 1; if (clip) { int a3 = FFMIN(a1, a2); int d = 5 * (a3 - a0); int d_sign = (d >> 31); d = ((d ^ d_sign) - d_sign) >> 3; d_sign ^= a0_sign; if (d_sign ^ clip_sign) d = 0; else { d = FFMIN(d, clip); d = (d ^ d_sign) - d_sign; /* Restore sign */ src[-1 * stride] = av_clip_uint8(src[-1 * stride] - d); src[ 0 * stride] = av_clip_uint8(src[ 0 * stride] + d); } return 1; } } } return 0; } /** * VC-1 in-loop deblocking filter * @param src source block type * @param step distance between horizontally adjacent elements * @param stride distance between vertically adjacent elements * @param len edge length to filter (4 or 8 pixels) * @param pq block quantizer * @see 8.6 */ static inline void vc1_loop_filter(uint8_t *src, int step, ptrdiff_t stride, int len, int pq) { int i; int filt3; for (i = 0; i < len; i += 4) { filt3 = vc1_filter_line(src + 2 * step, stride, pq); if (filt3) { vc1_filter_line(src + 0 * step, stride, pq); vc1_filter_line(src + 1 * step, stride, pq); vc1_filter_line(src + 3 * step, stride, pq); } src += step * 4; } } static void vc1_v_loop_filter4_c(uint8_t *src, ptrdiff_t stride, int pq) { vc1_loop_filter(src, 1, stride, 4, pq); } static void vc1_h_loop_filter4_c(uint8_t *src, ptrdiff_t stride, int pq) { vc1_loop_filter(src, stride, 1, 4, pq); } static void vc1_v_loop_filter8_c(uint8_t *src, ptrdiff_t stride, int pq) { vc1_loop_filter(src, 1, stride, 8, pq); } static void vc1_h_loop_filter8_c(uint8_t *src, ptrdiff_t stride, int pq) { vc1_loop_filter(src, stride, 1, 8, pq); } static void vc1_v_loop_filter16_c(uint8_t *src, ptrdiff_t stride, int pq) { vc1_loop_filter(src, 1, stride, 16, pq); } static void vc1_h_loop_filter16_c(uint8_t *src, ptrdiff_t stride, int pq) { vc1_loop_filter(src, stride, 1, 16, pq); } /* Do inverse transform on 8x8 block */ static void vc1_inv_trans_8x8_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block) { int i; int dc = block[0]; dc = (3 * dc + 1) >> 1; dc = (3 * dc + 16) >> 5; for (i = 0; i < 8; i++) { dest[0] = av_clip_uint8(dest[0] + dc); dest[1] = av_clip_uint8(dest[1] + dc); dest[2] = av_clip_uint8(dest[2] + dc); dest[3] = av_clip_uint8(dest[3] + dc); dest[4] = av_clip_uint8(dest[4] + dc); dest[5] = av_clip_uint8(dest[5] + dc); dest[6] = av_clip_uint8(dest[6] + dc); dest[7] = av_clip_uint8(dest[7] + dc); dest += stride; } } static void vc1_inv_trans_8x8_c(int16_t block[64]) { int i; register int t1, t2, t3, t4, t5, t6, t7, t8; int16_t *src, *dst, temp[64]; src = block; dst = temp; for (i = 0; i < 8; i++) { t1 = 12 * (src[ 0] + src[32]) + 4; t2 = 12 * (src[ 0] - src[32]) + 4; t3 = 16 * src[16] + 6 * src[48]; t4 = 6 * src[16] - 16 * src[48]; t5 = t1 + t3; t6 = t2 + t4; t7 = t2 - t4; t8 = t1 - t3; t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56]; t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56]; t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56]; t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56]; dst[0] = (t5 + t1) >> 3; dst[1] = (t6 + t2) >> 3; dst[2] = (t7 + t3) >> 3; dst[3] = (t8 + t4) >> 3; dst[4] = (t8 - t4) >> 3; dst[5] = (t7 - t3) >> 3; dst[6] = (t6 - t2) >> 3; dst[7] = (t5 - t1) >> 3; src += 1; dst += 8; } src = temp; dst = block; for (i = 0; i < 8; i++) { t1 = 12 * (src[ 0] + src[32]) + 64; t2 = 12 * (src[ 0] - src[32]) + 64; t3 = 16 * src[16] + 6 * src[48]; t4 = 6 * src[16] - 16 * src[48]; t5 = t1 + t3; t6 = t2 + t4; t7 = t2 - t4; t8 = t1 - t3; t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56]; t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56]; t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56]; t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56]; dst[ 0] = (t5 + t1) >> 7; dst[ 8] = (t6 + t2) >> 7; dst[16] = (t7 + t3) >> 7; dst[24] = (t8 + t4) >> 7; dst[32] = (t8 - t4 + 1) >> 7; dst[40] = (t7 - t3 + 1) >> 7; dst[48] = (t6 - t2 + 1) >> 7; dst[56] = (t5 - t1 + 1) >> 7; src++; dst++; } } /* Do inverse transform on 8x4 part of block */ static void vc1_inv_trans_8x4_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block) { int i; int dc = block[0]; dc = (3 * dc + 1) >> 1; dc = (17 * dc + 64) >> 7; for (i = 0; i < 4; i++) { dest[0] = av_clip_uint8(dest[0] + dc); dest[1] = av_clip_uint8(dest[1] + dc); dest[2] = av_clip_uint8(dest[2] + dc); dest[3] = av_clip_uint8(dest[3] + dc); dest[4] = av_clip_uint8(dest[4] + dc); dest[5] = av_clip_uint8(dest[5] + dc); dest[6] = av_clip_uint8(dest[6] + dc); dest[7] = av_clip_uint8(dest[7] + dc); dest += stride; } } static void vc1_inv_trans_8x4_c(uint8_t *dest, ptrdiff_t stride, int16_t *block) { int i; register int t1, t2, t3, t4, t5, t6, t7, t8; int16_t *src, *dst; src = block; dst = block; for (i = 0; i < 4; i++) { t1 = 12 * (src[0] + src[4]) + 4; t2 = 12 * (src[0] - src[4]) + 4; t3 = 16 * src[2] + 6 * src[6]; t4 = 6 * src[2] - 16 * src[6]; t5 = t1 + t3; t6 = t2 + t4; t7 = t2 - t4; t8 = t1 - t3; t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7]; t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7]; t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7]; t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7]; dst[0] = (t5 + t1) >> 3; dst[1] = (t6 + t2) >> 3; dst[2] = (t7 + t3) >> 3; dst[3] = (t8 + t4) >> 3; dst[4] = (t8 - t4) >> 3; dst[5] = (t7 - t3) >> 3; dst[6] = (t6 - t2) >> 3; dst[7] = (t5 - t1) >> 3; src += 8; dst += 8; } src = block; for (i = 0; i < 8; i++) { t1 = 17 * (src[ 0] + src[16]) + 64; t2 = 17 * (src[ 0] - src[16]) + 64; t3 = 22 * src[ 8] + 10 * src[24]; t4 = 22 * src[24] - 10 * src[ 8]; dest[0 * stride] = av_clip_uint8(dest[0 * stride] + ((t1 + t3) >> 7)); dest[1 * stride] = av_clip_uint8(dest[1 * stride] + ((t2 - t4) >> 7)); dest[2 * stride] = av_clip_uint8(dest[2 * stride] + ((t2 + t4) >> 7)); dest[3 * stride] = av_clip_uint8(dest[3 * stride] + ((t1 - t3) >> 7)); src++; dest++; } } /* Do inverse transform on 4x8 parts of block */ static void vc1_inv_trans_4x8_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block) { int i; int dc = block[0]; dc = (17 * dc + 4) >> 3; dc = (12 * dc + 64) >> 7; for (i = 0; i < 8; i++) { dest[0] = av_clip_uint8(dest[0] + dc); dest[1] = av_clip_uint8(dest[1] + dc); dest[2] = av_clip_uint8(dest[2] + dc); dest[3] = av_clip_uint8(dest[3] + dc); dest += stride; } } static void vc1_inv_trans_4x8_c(uint8_t *dest, ptrdiff_t stride, int16_t *block) { int i; register int t1, t2, t3, t4, t5, t6, t7, t8; int16_t *src, *dst; src = block; dst = block; for (i = 0; i < 8; i++) { t1 = 17 * (src[0] + src[2]) + 4; t2 = 17 * (src[0] - src[2]) + 4; t3 = 22 * src[1] + 10 * src[3]; t4 = 22 * src[3] - 10 * src[1]; dst[0] = (t1 + t3) >> 3; dst[1] = (t2 - t4) >> 3; dst[2] = (t2 + t4) >> 3; dst[3] = (t1 - t3) >> 3; src += 8; dst += 8; } src = block; for (i = 0; i < 4; i++) { t1 = 12 * (src[ 0] + src[32]) + 64; t2 = 12 * (src[ 0] - src[32]) + 64; t3 = 16 * src[16] + 6 * src[48]; t4 = 6 * src[16] - 16 * src[48]; t5 = t1 + t3; t6 = t2 + t4; t7 = t2 - t4; t8 = t1 - t3; t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56]; t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56]; t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56]; t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56]; dest[0 * stride] = av_clip_uint8(dest[0 * stride] + ((t5 + t1) >> 7)); dest[1 * stride] = av_clip_uint8(dest[1 * stride] + ((t6 + t2) >> 7)); dest[2 * stride] = av_clip_uint8(dest[2 * stride] + ((t7 + t3) >> 7)); dest[3 * stride] = av_clip_uint8(dest[3 * stride] + ((t8 + t4) >> 7)); dest[4 * stride] = av_clip_uint8(dest[4 * stride] + ((t8 - t4 + 1) >> 7)); dest[5 * stride] = av_clip_uint8(dest[5 * stride] + ((t7 - t3 + 1) >> 7)); dest[6 * stride] = av_clip_uint8(dest[6 * stride] + ((t6 - t2 + 1) >> 7)); dest[7 * stride] = av_clip_uint8(dest[7 * stride] + ((t5 - t1 + 1) >> 7)); src++; dest++; } } /* Do inverse transform on 4x4 part of block */ static void vc1_inv_trans_4x4_dc_c(uint8_t *dest, ptrdiff_t stride, int16_t *block) { int i; int dc = block[0]; dc = (17 * dc + 4) >> 3; dc = (17 * dc + 64) >> 7; for (i = 0; i < 4; i++) { dest[0] = av_clip_uint8(dest[0] + dc); dest[1] = av_clip_uint8(dest[1] + dc); dest[2] = av_clip_uint8(dest[2] + dc); dest[3] = av_clip_uint8(dest[3] + dc); dest += stride; } } static void vc1_inv_trans_4x4_c(uint8_t *dest, ptrdiff_t stride, int16_t *block) { int i; register int t1, t2, t3, t4; int16_t *src, *dst; src = block; dst = block; for (i = 0; i < 4; i++) { t1 = 17 * (src[0] + src[2]) + 4; t2 = 17 * (src[0] - src[2]) + 4; t3 = 22 * src[1] + 10 * src[3]; t4 = 22 * src[3] - 10 * src[1]; dst[0] = (t1 + t3) >> 3; dst[1] = (t2 - t4) >> 3; dst[2] = (t2 + t4) >> 3; dst[3] = (t1 - t3) >> 3; src += 8; dst += 8; } src = block; for (i = 0; i < 4; i++) { t1 = 17 * (src[0] + src[16]) + 64; t2 = 17 * (src[0] - src[16]) + 64; t3 = 22 * src[8] + 10 * src[24]; t4 = 22 * src[24] - 10 * src[8]; dest[0 * stride] = av_clip_uint8(dest[0 * stride] + ((t1 + t3) >> 7)); dest[1 * stride] = av_clip_uint8(dest[1 * stride] + ((t2 - t4) >> 7)); dest[2 * stride] = av_clip_uint8(dest[2 * stride] + ((t2 + t4) >> 7)); dest[3 * stride] = av_clip_uint8(dest[3 * stride] + ((t1 - t3) >> 7)); src++; dest++; } } /* motion compensation functions */ /* Filter in case of 2 filters */ #define VC1_MSPEL_FILTER_16B(DIR, TYPE) \ static av_always_inline int vc1_mspel_ ## DIR ## _filter_16bits(const TYPE *src, \ int stride, \ int mode) \ { \ switch(mode) { \ case 0: /* no shift - should not occur */ \ return 0; \ case 1: /* 1/4 shift */ \ return -4 * src[-stride] + 53 * src[0] + \ 18 * src[stride] - 3 * src[stride * 2]; \ case 2: /* 1/2 shift */ \ return -1 * src[-stride] + 9 * src[0] + \ 9 * src[stride] - 1 * src[stride * 2]; \ case 3: /* 3/4 shift */ \ return -3 * src[-stride] + 18 * src[0] + \ 53 * src[stride] - 4 * src[stride * 2]; \ } \ return 0; /* should not occur */ \ } VC1_MSPEL_FILTER_16B(ver, uint8_t) VC1_MSPEL_FILTER_16B(hor, int16_t) /* Filter used to interpolate fractional pel values */ static av_always_inline int vc1_mspel_filter(const uint8_t *src, int stride, int mode, int r) { switch (mode) { case 0: // no shift return src[0]; case 1: // 1/4 shift return (-4 * src[-stride] + 53 * src[0] + 18 * src[stride] - 3 * src[stride * 2] + 32 - r) >> 6; case 2: // 1/2 shift return (-1 * src[-stride] + 9 * src[0] + 9 * src[stride] - 1 * src[stride * 2] + 8 - r) >> 4; case 3: // 3/4 shift return (-3 * src[-stride] + 18 * src[0] + 53 * src[stride] - 4 * src[stride * 2] + 32 - r) >> 6; } return 0; // should not occur } /* Function used to do motion compensation with bicubic interpolation */ #define VC1_MSPEL_MC(OP, OP4, OPNAME) \ static av_always_inline void OPNAME ## vc1_mspel_mc(uint8_t *dst, \ const uint8_t *src, \ ptrdiff_t stride, \ int hmode, \ int vmode, \ int rnd) \ { \ int i, j; \ \ if (vmode) { /* Horizontal filter to apply */ \ int r; \ \ if (hmode) { /* Vertical filter to apply, output to tmp */ \ static const int shift_value[] = { 0, 5, 1, 5 }; \ int shift = (shift_value[hmode] + shift_value[vmode]) >> 1; \ int16_t tmp[11 * 8], *tptr = tmp; \ \ r = (1 << (shift - 1)) + rnd - 1; \ \ src -= 1; \ for (j = 0; j < 8; j++) { \ for (i = 0; i < 11; i++) \ tptr[i] = (vc1_mspel_ver_filter_16bits(src + i, stride, vmode) + r) >> shift; \ src += stride; \ tptr += 11; \ } \ \ r = 64 - rnd; \ tptr = tmp + 1; \ for (j = 0; j < 8; j++) { \ for (i = 0; i < 8; i++) \ OP(dst[i], (vc1_mspel_hor_filter_16bits(tptr + i, 1, hmode) + r) >> 7); \ dst += stride; \ tptr += 11; \ } \ \ return; \ } else { /* No horizontal filter, output 8 lines to dst */ \ r = 1 - rnd; \ \ for (j = 0; j < 8; j++) { \ for (i = 0; i < 8; i++) \ OP(dst[i], vc1_mspel_filter(src + i, stride, vmode, r)); \ src += stride; \ dst += stride; \ } \ return; \ } \ } \ \ /* Horizontal mode with no vertical mode */ \ for (j = 0; j < 8; j++) { \ for (i = 0; i < 8; i++) \ OP(dst[i], vc1_mspel_filter(src + i, 1, hmode, rnd)); \ dst += stride; \ src += stride; \ } \ }\ static av_always_inline void OPNAME ## vc1_mspel_mc_16(uint8_t *dst, \ const uint8_t *src, \ ptrdiff_t stride, \ int hmode, \ int vmode, \ int rnd) \ { \ int i, j; \ \ if (vmode) { /* Horizontal filter to apply */ \ int r; \ \ if (hmode) { /* Vertical filter to apply, output to tmp */ \ static const int shift_value[] = { 0, 5, 1, 5 }; \ int shift = (shift_value[hmode] + shift_value[vmode]) >> 1; \ int16_t tmp[19 * 16], *tptr = tmp; \ \ r = (1 << (shift - 1)) + rnd - 1; \ \ src -= 1; \ for (j = 0; j < 16; j++) { \ for (i = 0; i < 19; i++) \ tptr[i] = (vc1_mspel_ver_filter_16bits(src + i, stride, vmode) + r) >> shift; \ src += stride; \ tptr += 19; \ } \ \ r = 64 - rnd; \ tptr = tmp + 1; \ for (j = 0; j < 16; j++) { \ for (i = 0; i < 16; i++) \ OP(dst[i], (vc1_mspel_hor_filter_16bits(tptr + i, 1, hmode) + r) >> 7); \ dst += stride; \ tptr += 19; \ } \ \ return; \ } else { /* No horizontal filter, output 8 lines to dst */ \ r = 1 - rnd; \ \ for (j = 0; j < 16; j++) { \ for (i = 0; i < 16; i++) \ OP(dst[i], vc1_mspel_filter(src + i, stride, vmode, r)); \ src += stride; \ dst += stride; \ } \ return; \ } \ } \ \ /* Horizontal mode with no vertical mode */ \ for (j = 0; j < 16; j++) { \ for (i = 0; i < 16; i++) \ OP(dst[i], vc1_mspel_filter(src + i, 1, hmode, rnd)); \ dst += stride; \ src += stride; \ } \ }\ static void OPNAME ## pixels8x8_c(uint8_t *block, const uint8_t *pixels, ptrdiff_t line_size, int rnd){\ int i;\ for(i=0; i<8; i++){\ OP4(*(uint32_t*)(block ), AV_RN32(pixels ));\ OP4(*(uint32_t*)(block+4), AV_RN32(pixels+4));\ pixels+=line_size;\ block +=line_size;\ }\ }\ static void OPNAME ## pixels16x16_c(uint8_t *block, const uint8_t *pixels, ptrdiff_t line_size, int rnd){\ int i;\ for(i=0; i<16; i++){\ OP4(*(uint32_t*)(block ), AV_RN32(pixels ));\ OP4(*(uint32_t*)(block+ 4), AV_RN32(pixels+ 4));\ OP4(*(uint32_t*)(block+ 8), AV_RN32(pixels+ 8));\ OP4(*(uint32_t*)(block+12), AV_RN32(pixels+12));\ pixels+=line_size;\ block +=line_size;\ }\ } #define op_put(a, b) (a) = av_clip_uint8(b) #define op_avg(a, b) (a) = ((a) + av_clip_uint8(b) + 1) >> 1 #define op4_avg(a, b) (a) = rnd_avg32(a, b) #define op4_put(a, b) (a) = (b) VC1_MSPEL_MC(op_put, op4_put, put_) VC1_MSPEL_MC(op_avg, op4_avg, avg_) /* pixel functions - really are entry points to vc1_mspel_mc */ #define PUT_VC1_MSPEL(a, b) \ static void put_vc1_mspel_mc ## a ## b ## _c(uint8_t *dst, \ const uint8_t *src, \ ptrdiff_t stride, int rnd) \ { \ put_vc1_mspel_mc(dst, src, stride, a, b, rnd); \ } \ static void avg_vc1_mspel_mc ## a ## b ## _c(uint8_t *dst, \ const uint8_t *src, \ ptrdiff_t stride, int rnd) \ { \ avg_vc1_mspel_mc(dst, src, stride, a, b, rnd); \ } \ static void put_vc1_mspel_mc ## a ## b ## _16_c(uint8_t *dst, \ const uint8_t *src, \ ptrdiff_t stride, int rnd) \ { \ put_vc1_mspel_mc_16(dst, src, stride, a, b, rnd); \ } \ static void avg_vc1_mspel_mc ## a ## b ## _16_c(uint8_t *dst, \ const uint8_t *src, \ ptrdiff_t stride, int rnd) \ { \ avg_vc1_mspel_mc_16(dst, src, stride, a, b, rnd); \ } PUT_VC1_MSPEL(1, 0) PUT_VC1_MSPEL(2, 0) PUT_VC1_MSPEL(3, 0) PUT_VC1_MSPEL(0, 1) PUT_VC1_MSPEL(1, 1) PUT_VC1_MSPEL(2, 1) PUT_VC1_MSPEL(3, 1) PUT_VC1_MSPEL(0, 2) PUT_VC1_MSPEL(1, 2) PUT_VC1_MSPEL(2, 2) PUT_VC1_MSPEL(3, 2) PUT_VC1_MSPEL(0, 3) PUT_VC1_MSPEL(1, 3) PUT_VC1_MSPEL(2, 3) PUT_VC1_MSPEL(3, 3) #define chroma_mc(a) \ ((A * src[a] + B * src[a + 1] + \ C * src[stride + a] + D * src[stride + a + 1] + 32 - 4) >> 6) static void put_no_rnd_vc1_chroma_mc8_c(uint8_t *dst /* align 8 */, const uint8_t *src /* align 1 */, ptrdiff_t stride, int h, int x, int y) { const int A = (8 - x) * (8 - y); const int B = (x) * (8 - y); const int C = (8 - x) * (y); const int D = (x) * (y); int i; av_assert2(x < 8 && y < 8 && x >= 0 && y >= 0); for (i = 0; i < h; i++) { dst[0] = chroma_mc(0); dst[1] = chroma_mc(1); dst[2] = chroma_mc(2); dst[3] = chroma_mc(3); dst[4] = chroma_mc(4); dst[5] = chroma_mc(5); dst[6] = chroma_mc(6); dst[7] = chroma_mc(7); dst += stride; src += stride; } } static void put_no_rnd_vc1_chroma_mc4_c(uint8_t *dst, const uint8_t *src, ptrdiff_t stride, int h, int x, int y) { const int A = (8 - x) * (8 - y); const int B = (x) * (8 - y); const int C = (8 - x) * (y); const int D = (x) * (y); int i; av_assert2(x < 8 && y < 8 && x >= 0 && y >= 0); for (i = 0; i < h; i++) { dst[0] = chroma_mc(0); dst[1] = chroma_mc(1); dst[2] = chroma_mc(2); dst[3] = chroma_mc(3); dst += stride; src += stride; } } #define avg2(a, b) (((a) + (b) + 1) >> 1) static void avg_no_rnd_vc1_chroma_mc8_c(uint8_t *dst /* align 8 */, const uint8_t *src /* align 1 */, ptrdiff_t stride, int h, int x, int y) { const int A = (8 - x) * (8 - y); const int B = (x) * (8 - y); const int C = (8 - x) * (y); const int D = (x) * (y); int i; av_assert2(x < 8 && y < 8 && x >= 0 && y >= 0); for (i = 0; i < h; i++) { dst[0] = avg2(dst[0], chroma_mc(0)); dst[1] = avg2(dst[1], chroma_mc(1)); dst[2] = avg2(dst[2], chroma_mc(2)); dst[3] = avg2(dst[3], chroma_mc(3)); dst[4] = avg2(dst[4], chroma_mc(4)); dst[5] = avg2(dst[5], chroma_mc(5)); dst[6] = avg2(dst[6], chroma_mc(6)); dst[7] = avg2(dst[7], chroma_mc(7)); dst += stride; src += stride; } } static void avg_no_rnd_vc1_chroma_mc4_c(uint8_t *dst /* align 8 */, const uint8_t *src /* align 1 */, ptrdiff_t stride, int h, int x, int y) { const int A = (8 - x) * (8 - y); const int B = ( x) * (8 - y); const int C = (8 - x) * ( y); const int D = ( x) * ( y); int i; av_assert2(x < 8 && y < 8 && x >= 0 && y >= 0); for (i = 0; i < h; i++) { dst[0] = avg2(dst[0], chroma_mc(0)); dst[1] = avg2(dst[1], chroma_mc(1)); dst[2] = avg2(dst[2], chroma_mc(2)); dst[3] = avg2(dst[3], chroma_mc(3)); dst += stride; src += stride; } } #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER static void sprite_h_c(uint8_t *dst, const uint8_t *src, int offset, int advance, int count) { while (count--) { int a = src[(offset >> 16)]; int b = src[(offset >> 16) + 1]; *dst++ = a + ((b - a) * (offset & 0xFFFF) >> 16); offset += advance; } } static av_always_inline void sprite_v_template(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset1, int two_sprites, const uint8_t *src2a, const uint8_t *src2b, int offset2, int alpha, int scaled, int width) { int a1, b1, a2, b2; while (width--) { a1 = *src1a++; if (scaled) { b1 = *src1b++; a1 = a1 + ((b1 - a1) * offset1 >> 16); } if (two_sprites) { a2 = *src2a++; if (scaled > 1) { b2 = *src2b++; a2 = a2 + ((b2 - a2) * offset2 >> 16); } a1 = a1 + ((a2 - a1) * alpha >> 16); } *dst++ = a1; } } static void sprite_v_single_c(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset, int width) { sprite_v_template(dst, src1a, src1b, offset, 0, NULL, NULL, 0, 0, 1, width); } static void sprite_v_double_noscale_c(uint8_t *dst, const uint8_t *src1a, const uint8_t *src2a, int alpha, int width) { sprite_v_template(dst, src1a, NULL, 0, 1, src2a, NULL, 0, alpha, 0, width); } static void sprite_v_double_onescale_c(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset1, const uint8_t *src2a, int alpha, int width) { sprite_v_template(dst, src1a, src1b, offset1, 1, src2a, NULL, 0, alpha, 1, width); } static void sprite_v_double_twoscale_c(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset1, const uint8_t *src2a, const uint8_t *src2b, int offset2, int alpha, int width) { sprite_v_template(dst, src1a, src1b, offset1, 1, src2a, src2b, offset2, alpha, 2, width); } #endif /* CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER */ #define FN_ASSIGN(X, Y) \ dsp->put_vc1_mspel_pixels_tab[1][X+4*Y] = put_vc1_mspel_mc##X##Y##_c; \ dsp->put_vc1_mspel_pixels_tab[0][X+4*Y] = put_vc1_mspel_mc##X##Y##_16_c; \ dsp->avg_vc1_mspel_pixels_tab[1][X+4*Y] = avg_vc1_mspel_mc##X##Y##_c; \ dsp->avg_vc1_mspel_pixels_tab[0][X+4*Y] = avg_vc1_mspel_mc##X##Y##_16_c av_cold void ff_vc1dsp_init(VC1DSPContext *dsp) { dsp->vc1_inv_trans_8x8 = vc1_inv_trans_8x8_c; dsp->vc1_inv_trans_4x8 = vc1_inv_trans_4x8_c; dsp->vc1_inv_trans_8x4 = vc1_inv_trans_8x4_c; dsp->vc1_inv_trans_4x4 = vc1_inv_trans_4x4_c; dsp->vc1_inv_trans_8x8_dc = vc1_inv_trans_8x8_dc_c; dsp->vc1_inv_trans_4x8_dc = vc1_inv_trans_4x8_dc_c; dsp->vc1_inv_trans_8x4_dc = vc1_inv_trans_8x4_dc_c; dsp->vc1_inv_trans_4x4_dc = vc1_inv_trans_4x4_dc_c; dsp->vc1_h_overlap = vc1_h_overlap_c; dsp->vc1_v_overlap = vc1_v_overlap_c; dsp->vc1_h_s_overlap = vc1_h_s_overlap_c; dsp->vc1_v_s_overlap = vc1_v_s_overlap_c; dsp->vc1_v_loop_filter4 = vc1_v_loop_filter4_c; dsp->vc1_h_loop_filter4 = vc1_h_loop_filter4_c; dsp->vc1_v_loop_filter8 = vc1_v_loop_filter8_c; dsp->vc1_h_loop_filter8 = vc1_h_loop_filter8_c; dsp->vc1_v_loop_filter16 = vc1_v_loop_filter16_c; dsp->vc1_h_loop_filter16 = vc1_h_loop_filter16_c; dsp->put_vc1_mspel_pixels_tab[0][0] = put_pixels16x16_c; dsp->avg_vc1_mspel_pixels_tab[0][0] = avg_pixels16x16_c; dsp->put_vc1_mspel_pixels_tab[1][0] = put_pixels8x8_c; dsp->avg_vc1_mspel_pixels_tab[1][0] = avg_pixels8x8_c; FN_ASSIGN(0, 1); FN_ASSIGN(0, 2); FN_ASSIGN(0, 3); FN_ASSIGN(1, 0); FN_ASSIGN(1, 1); FN_ASSIGN(1, 2); FN_ASSIGN(1, 3); FN_ASSIGN(2, 0); FN_ASSIGN(2, 1); FN_ASSIGN(2, 2); FN_ASSIGN(2, 3); FN_ASSIGN(3, 0); FN_ASSIGN(3, 1); FN_ASSIGN(3, 2); FN_ASSIGN(3, 3); dsp->put_no_rnd_vc1_chroma_pixels_tab[0] = put_no_rnd_vc1_chroma_mc8_c; dsp->avg_no_rnd_vc1_chroma_pixels_tab[0] = avg_no_rnd_vc1_chroma_mc8_c; dsp->put_no_rnd_vc1_chroma_pixels_tab[1] = put_no_rnd_vc1_chroma_mc4_c; dsp->avg_no_rnd_vc1_chroma_pixels_tab[1] = avg_no_rnd_vc1_chroma_mc4_c; #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER dsp->sprite_h = sprite_h_c; dsp->sprite_v_single = sprite_v_single_c; dsp->sprite_v_double_noscale = sprite_v_double_noscale_c; dsp->sprite_v_double_onescale = sprite_v_double_onescale_c; dsp->sprite_v_double_twoscale = sprite_v_double_twoscale_c; #endif /* CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER */ dsp->startcode_find_candidate = ff_startcode_find_candidate_c; dsp->vc1_unescape_buffer = vc1_unescape_buffer; #if ARCH_AARCH64 ff_vc1dsp_init_aarch64(dsp); #elif ARCH_ARM ff_vc1dsp_init_arm(dsp); #elif ARCH_PPC ff_vc1dsp_init_ppc(dsp); #elif ARCH_X86 ff_vc1dsp_init_x86(dsp); #elif ARCH_MIPS ff_vc1dsp_init_mips(dsp); #elif ARCH_LOONGARCH ff_vc1dsp_init_loongarch(dsp); #endif }