芝麻web文件管理V1.00
编辑当前文件:/home/qrafawbu/ffmpeg/libavcodec/truemotion1.c
/* * Duck TrueMotion 1.0 Decoder * Copyright (C) 2003 Alex Beregszaszi & Mike Melanson * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Duck TrueMotion v1 Video Decoder by * Alex Beregszaszi and * Mike Melanson (melanson@pcisys.net) * * The TrueMotion v1 decoder presently only decodes 16-bit TM1 data and * outputs RGB555 (or RGB565) data. 24-bit TM1 data is not supported yet. */ #include
#include
#include
#include "avcodec.h" #include "codec_internal.h" #include "decode.h" #include "libavutil/imgutils.h" #include "libavutil/internal.h" #include "libavutil/intreadwrite.h" #include "libavutil/mem.h" #include "truemotion1data.h" typedef struct TrueMotion1Context { AVCodecContext *avctx; AVFrame *frame; const uint8_t *buf; int size; const uint8_t *mb_change_bits; int mb_change_bits_row_size; const uint8_t *index_stream; int index_stream_size; int flags; int x, y, w, h; uint32_t y_predictor_table[1024]; uint32_t c_predictor_table[1024]; uint32_t fat_y_predictor_table[1024]; uint32_t fat_c_predictor_table[1024]; int compression; int block_type; int block_width; int block_height; int16_t ydt[8]; int16_t cdt[8]; int16_t fat_ydt[8]; int16_t fat_cdt[8]; int last_deltaset, last_vectable; unsigned int *vert_pred; int vert_pred_size; } TrueMotion1Context; #define FLAG_SPRITE 32 #define FLAG_KEYFRAME 16 #define FLAG_INTERFRAME 8 #define FLAG_INTERPOLATED 4 struct frame_header { uint8_t header_size; uint8_t compression; uint8_t deltaset; uint8_t vectable; uint16_t ysize; uint16_t xsize; uint16_t checksum; uint8_t version; uint8_t header_type; uint8_t flags; uint8_t control; uint16_t xoffset; uint16_t yoffset; uint16_t width; uint16_t height; }; #define ALGO_NOP 0 #define ALGO_RGB16V 1 #define ALGO_RGB16H 2 #define ALGO_RGB24H 3 /* these are the various block sizes that can occupy a 4x4 block */ #define BLOCK_2x2 0 #define BLOCK_2x4 1 #define BLOCK_4x2 2 #define BLOCK_4x4 3 typedef struct comp_types { int algorithm; int block_width; // vres int block_height; // hres int block_type; } comp_types; /* { valid for metatype }, algorithm, num of deltas, vert res, horiz res */ static const comp_types compression_types[17] = { { ALGO_NOP, 0, 0, 0 }, { ALGO_RGB16V, 4, 4, BLOCK_4x4 }, { ALGO_RGB16H, 4, 4, BLOCK_4x4 }, { ALGO_RGB16V, 4, 2, BLOCK_4x2 }, { ALGO_RGB16H, 4, 2, BLOCK_4x2 }, { ALGO_RGB16V, 2, 4, BLOCK_2x4 }, { ALGO_RGB16H, 2, 4, BLOCK_2x4 }, { ALGO_RGB16V, 2, 2, BLOCK_2x2 }, { ALGO_RGB16H, 2, 2, BLOCK_2x2 }, { ALGO_NOP, 4, 4, BLOCK_4x4 }, { ALGO_RGB24H, 4, 4, BLOCK_4x4 }, { ALGO_NOP, 4, 2, BLOCK_4x2 }, { ALGO_RGB24H, 4, 2, BLOCK_4x2 }, { ALGO_NOP, 2, 4, BLOCK_2x4 }, { ALGO_RGB24H, 2, 4, BLOCK_2x4 }, { ALGO_NOP, 2, 2, BLOCK_2x2 }, { ALGO_RGB24H, 2, 2, BLOCK_2x2 } }; static void select_delta_tables(TrueMotion1Context *s, int delta_table_index) { int i; if (delta_table_index > 3) return; memcpy(s->ydt, ydts[delta_table_index], 8 * sizeof(int16_t)); memcpy(s->cdt, cdts[delta_table_index], 8 * sizeof(int16_t)); memcpy(s->fat_ydt, fat_ydts[delta_table_index], 8 * sizeof(int16_t)); memcpy(s->fat_cdt, fat_cdts[delta_table_index], 8 * sizeof(int16_t)); /* Y skinny deltas need to be halved for some reason; maybe the * skinny Y deltas should be modified */ for (i = 0; i < 8; i++) { /* drop the lsb before dividing by 2-- net effect: round down * when dividing a negative number (e.g., -3/2 = -2, not -1) */ s->ydt[i] &= 0xFFFE; s->ydt[i] /= 2; } } #if HAVE_BIGENDIAN static int make_ydt15_entry(int p2, int p1, int16_t *ydt) #else static int make_ydt15_entry(int p1, int p2, int16_t *ydt) #endif { int lo, hi; lo = ydt[p1]; lo += (lo * 32) + (lo * 1024); hi = ydt[p2]; hi += (hi * 32) + (hi * 1024); return (lo + (hi * (1U << 16))) * 2; } static int make_cdt15_entry(int p1, int p2, int16_t *cdt) { int r, b, lo; b = cdt[p2]; r = cdt[p1] * 1024; lo = b + r; return (lo + (lo * (1U << 16))) * 2; } #if HAVE_BIGENDIAN static int make_ydt16_entry(int p2, int p1, int16_t *ydt) #else static int make_ydt16_entry(int p1, int p2, int16_t *ydt) #endif { int lo, hi; lo = ydt[p1]; lo += (lo << 6) + (lo << 11); hi = ydt[p2]; hi += (hi << 6) + (hi << 11); return (lo + (hi << 16)) << 1; } static int make_cdt16_entry(int p1, int p2, int16_t *cdt) { int r, b, lo; b = cdt[p2]; r = cdt[p1] << 11; lo = b + r; return (lo + (lo * (1 << 16))) * 2; } static int make_ydt24_entry(int p1, int p2, int16_t *ydt) { int lo, hi; lo = ydt[p1]; hi = ydt[p2]; return (lo + (hi * (1 << 8)) + (hi * (1 << 16))) * 2; } static int make_cdt24_entry(int p1, int p2, int16_t *cdt) { int r, b; b = cdt[p2]; r = cdt[p1] * (1 << 16); return (b+r) * 2; } static void gen_vector_table15(TrueMotion1Context *s, const uint8_t *sel_vector_table) { int len, i, j; unsigned char delta_pair; for (i = 0; i < 1024; i += 4) { len = *sel_vector_table++ / 2; for (j = 0; j < len; j++) { delta_pair = *sel_vector_table++; s->y_predictor_table[i+j] = 0xfffffffe & make_ydt15_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt); s->c_predictor_table[i+j] = 0xfffffffe & make_cdt15_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt); } s->y_predictor_table[i+(j-1)] |= 1; s->c_predictor_table[i+(j-1)] |= 1; } } static void gen_vector_table16(TrueMotion1Context *s, const uint8_t *sel_vector_table) { int len, i, j; unsigned char delta_pair; for (i = 0; i < 1024; i += 4) { len = *sel_vector_table++ / 2; for (j = 0; j < len; j++) { delta_pair = *sel_vector_table++; s->y_predictor_table[i+j] = 0xfffffffe & make_ydt16_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt); s->c_predictor_table[i+j] = 0xfffffffe & make_cdt16_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt); } s->y_predictor_table[i+(j-1)] |= 1; s->c_predictor_table[i+(j-1)] |= 1; } } static void gen_vector_table24(TrueMotion1Context *s, const uint8_t *sel_vector_table) { int len, i, j; unsigned char delta_pair; for (i = 0; i < 1024; i += 4) { len = *sel_vector_table++ / 2; for (j = 0; j < len; j++) { delta_pair = *sel_vector_table++; s->y_predictor_table[i+j] = 0xfffffffe & make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->ydt); s->c_predictor_table[i+j] = 0xfffffffe & make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->cdt); s->fat_y_predictor_table[i+j] = 0xfffffffe & make_ydt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_ydt); s->fat_c_predictor_table[i+j] = 0xfffffffe & make_cdt24_entry(delta_pair >> 4, delta_pair & 0xf, s->fat_cdt); } s->y_predictor_table[i+(j-1)] |= 1; s->c_predictor_table[i+(j-1)] |= 1; s->fat_y_predictor_table[i+(j-1)] |= 1; s->fat_c_predictor_table[i+(j-1)] |= 1; } } /* Returns the number of bytes consumed from the bytestream. Returns -1 if * there was an error while decoding the header */ static int truemotion1_decode_header(TrueMotion1Context *s) { int i, ret; int width_shift = 0; int new_pix_fmt; struct frame_header header; uint8_t header_buffer[128] = { 0 }; /* logical maximum size of the header */ const uint8_t *sel_vector_table; header.header_size = ((s->buf[0] >> 5) | (s->buf[0] << 3)) & 0x7f; if (s->buf[0] < 0x10) { av_log(s->avctx, AV_LOG_ERROR, "invalid header size (%d)\n", s->buf[0]); return AVERROR_INVALIDDATA; } if (header.header_size + 1 > s->size) { av_log(s->avctx, AV_LOG_ERROR, "Input packet too small.\n"); return AVERROR_INVALIDDATA; } /* unscramble the header bytes with a XOR operation */ for (i = 1; i < header.header_size; i++) header_buffer[i - 1] = s->buf[i] ^ s->buf[i + 1]; header.compression = header_buffer[0]; header.deltaset = header_buffer[1]; header.vectable = header_buffer[2]; header.ysize = AV_RL16(&header_buffer[3]); header.xsize = AV_RL16(&header_buffer[5]); header.checksum = AV_RL16(&header_buffer[7]); header.version = header_buffer[9]; header.header_type = header_buffer[10]; header.flags = header_buffer[11]; header.control = header_buffer[12]; /* Version 2 */ if (header.version >= 2) { if (header.header_type > 3) { av_log(s->avctx, AV_LOG_ERROR, "invalid header type (%d)\n", header.header_type); return AVERROR_INVALIDDATA; } else if ((header.header_type == 2) || (header.header_type == 3)) { s->flags = header.flags; if (!(s->flags & FLAG_INTERFRAME)) s->flags |= FLAG_KEYFRAME; } else s->flags = FLAG_KEYFRAME; } else /* Version 1 */ s->flags = FLAG_KEYFRAME; if (s->flags & FLAG_SPRITE) { avpriv_request_sample(s->avctx, "Frame with sprite"); /* FIXME header.width, height, xoffset and yoffset aren't initialized */ return AVERROR_PATCHWELCOME; } else { s->w = header.xsize; s->h = header.ysize; if (header.header_type < 2) { if ((s->w < 213) && (s->h >= 176)) { s->flags |= FLAG_INTERPOLATED; avpriv_request_sample(s->avctx, "Interpolated frame"); } } } if (header.compression >= 17) { av_log(s->avctx, AV_LOG_ERROR, "invalid compression type (%d)\n", header.compression); return AVERROR_INVALIDDATA; } if ((header.deltaset != s->last_deltaset) || (header.vectable != s->last_vectable)) select_delta_tables(s, header.deltaset); if ((header.compression & 1) && header.header_type) sel_vector_table = pc_tbl2; else { if (header.vectable > 0 && header.vectable < 4) sel_vector_table = tables[header.vectable - 1]; else { av_log(s->avctx, AV_LOG_ERROR, "invalid vector table id (%d)\n", header.vectable); return AVERROR_INVALIDDATA; } } if (compression_types[header.compression].algorithm == ALGO_RGB24H) { new_pix_fmt = AV_PIX_FMT_0RGB32; width_shift = 1; } else new_pix_fmt = AV_PIX_FMT_RGB555; // RGB565 is supported as well s->w >>= width_shift; if (s->w & 1) { avpriv_request_sample(s->avctx, "Frame with odd width"); return AVERROR_PATCHWELCOME; } if (s->w != s->avctx->width || s->h != s->avctx->height || new_pix_fmt != s->avctx->pix_fmt) { av_frame_unref(s->frame); s->avctx->sample_aspect_ratio = (AVRational){ 1 << width_shift, 1 }; s->avctx->pix_fmt = new_pix_fmt; if ((ret = ff_set_dimensions(s->avctx, s->w, s->h)) < 0) return ret; ff_set_sar(s->avctx, s->avctx->sample_aspect_ratio); av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int)); if (!s->vert_pred) return AVERROR(ENOMEM); } /* There is 1 change bit per 4 pixels, so each change byte represents * 32 pixels; divide width by 4 to obtain the number of change bits and * then round up to the nearest byte. */ s->mb_change_bits_row_size = ((s->avctx->width >> (2 - width_shift)) + 7) >> 3; if ((header.deltaset != s->last_deltaset) || (header.vectable != s->last_vectable)) { if (compression_types[header.compression].algorithm == ALGO_RGB24H) gen_vector_table24(s, sel_vector_table); else if (s->avctx->pix_fmt == AV_PIX_FMT_RGB555) gen_vector_table15(s, sel_vector_table); else gen_vector_table16(s, sel_vector_table); } /* set up pointers to the other key data chunks */ s->mb_change_bits = s->buf + header.header_size; if (s->flags & FLAG_KEYFRAME) { /* no change bits specified for a keyframe; only index bytes */ s->index_stream = s->mb_change_bits; if (s->avctx->width * s->avctx->height / 2048 + header.header_size > s->size) return AVERROR_INVALIDDATA; } else { /* one change bit per 4x4 block */ s->index_stream = s->mb_change_bits + (s->mb_change_bits_row_size * (s->avctx->height >> 2)); } s->index_stream_size = s->size - (s->index_stream - s->buf); s->last_deltaset = header.deltaset; s->last_vectable = header.vectable; s->compression = header.compression; s->block_width = compression_types[header.compression].block_width; s->block_height = compression_types[header.compression].block_height; s->block_type = compression_types[header.compression].block_type; if (s->avctx->debug & FF_DEBUG_PICT_INFO) av_log(s->avctx, AV_LOG_INFO, "tables: %d / %d c:%d %dx%d t:%d %s%s%s%s\n", s->last_deltaset, s->last_vectable, s->compression, s->block_width, s->block_height, s->block_type, s->flags & FLAG_KEYFRAME ? " KEY" : "", s->flags & FLAG_INTERFRAME ? " INTER" : "", s->flags & FLAG_SPRITE ? " SPRITE" : "", s->flags & FLAG_INTERPOLATED ? " INTERPOL" : ""); return header.header_size; } static av_cold int truemotion1_decode_init(AVCodecContext *avctx) { TrueMotion1Context *s = avctx->priv_data; s->avctx = avctx; // FIXME: it may change ? // if (avctx->bits_per_sample == 24) // avctx->pix_fmt = AV_PIX_FMT_RGB24; // else // avctx->pix_fmt = AV_PIX_FMT_RGB555; s->frame = av_frame_alloc(); if (!s->frame) return AVERROR(ENOMEM); /* there is a vertical predictor for each pixel in a line; each vertical * predictor is 0 to start with */ av_fast_malloc(&s->vert_pred, &s->vert_pred_size, s->avctx->width * sizeof(unsigned int)); if (!s->vert_pred) return AVERROR(ENOMEM); return 0; } /* Block decoding order: dxi: Y-Y dxic: Y-C-Y dxic2: Y-C-Y-C hres,vres,i,i%vres (0 < i < 4) 2x2 0: 0 dxic2 2x2 1: 1 dxi 2x2 2: 0 dxic2 2x2 3: 1 dxi 2x4 0: 0 dxic2 2x4 1: 1 dxi 2x4 2: 2 dxi 2x4 3: 3 dxi 4x2 0: 0 dxic 4x2 1: 1 dxi 4x2 2: 0 dxic 4x2 3: 1 dxi 4x4 0: 0 dxic 4x4 1: 1 dxi 4x4 2: 2 dxi 4x4 3: 3 dxi */ #define GET_NEXT_INDEX() \ {\ if (index_stream_index >= s->index_stream_size) { \ av_log(s->avctx, AV_LOG_INFO, " help! truemotion1 decoder went out of bounds\n"); \ return; \ } \ index = s->index_stream[index_stream_index++] * 4; \ } #define INC_INDEX \ do { \ if (index >= 1023) { \ av_log(s->avctx, AV_LOG_ERROR, "Invalid index value.\n"); \ return; \ } \ index++; \ } while (0) #define APPLY_C_PREDICTOR() \ predictor_pair = s->c_predictor_table[index]; \ horiz_pred += (predictor_pair >> 1); \ if (predictor_pair & 1) { \ GET_NEXT_INDEX() \ if (!index) { \ GET_NEXT_INDEX() \ predictor_pair = s->c_predictor_table[index]; \ horiz_pred += ((predictor_pair >> 1) * 5); \ if (predictor_pair & 1) \ GET_NEXT_INDEX() \ else \ INC_INDEX; \ } \ } else \ INC_INDEX; #define APPLY_C_PREDICTOR_24() \ predictor_pair = s->c_predictor_table[index]; \ horiz_pred += (predictor_pair >> 1); \ if (predictor_pair & 1) { \ GET_NEXT_INDEX() \ if (!index) { \ GET_NEXT_INDEX() \ predictor_pair = s->fat_c_predictor_table[index]; \ horiz_pred += (predictor_pair >> 1); \ if (predictor_pair & 1) \ GET_NEXT_INDEX() \ else \ INC_INDEX; \ } \ } else \ INC_INDEX; #define APPLY_Y_PREDICTOR() \ predictor_pair = s->y_predictor_table[index]; \ horiz_pred += (predictor_pair >> 1); \ if (predictor_pair & 1) { \ GET_NEXT_INDEX() \ if (!index) { \ GET_NEXT_INDEX() \ predictor_pair = s->y_predictor_table[index]; \ horiz_pred += ((predictor_pair >> 1) * 5); \ if (predictor_pair & 1) \ GET_NEXT_INDEX() \ else \ INC_INDEX; \ } \ } else \ INC_INDEX; #define APPLY_Y_PREDICTOR_24() \ predictor_pair = s->y_predictor_table[index]; \ horiz_pred += (predictor_pair >> 1); \ if (predictor_pair & 1) { \ GET_NEXT_INDEX() \ if (!index) { \ GET_NEXT_INDEX() \ predictor_pair = s->fat_y_predictor_table[index]; \ horiz_pred += (predictor_pair >> 1); \ if (predictor_pair & 1) \ GET_NEXT_INDEX() \ else \ INC_INDEX; \ } \ } else \ INC_INDEX; #define OUTPUT_PIXEL_PAIR() \ *current_pixel_pair = *vert_pred + horiz_pred; \ *vert_pred++ = *current_pixel_pair++; static void truemotion1_decode_16bit(TrueMotion1Context *s) { int y; int pixels_left; /* remaining pixels on this line */ unsigned int predictor_pair; unsigned int horiz_pred; unsigned int *vert_pred; unsigned int *current_pixel_pair; unsigned char *current_line = s->frame->data[0]; int keyframe = s->flags & FLAG_KEYFRAME; /* these variables are for managing the stream of macroblock change bits */ const unsigned char *mb_change_bits = s->mb_change_bits; unsigned char mb_change_byte; unsigned char mb_change_byte_mask; int mb_change_index; /* these variables are for managing the main index stream */ int index_stream_index = 0; /* yes, the index into the index stream */ int index; /* clean out the line buffer */ memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int)); GET_NEXT_INDEX(); for (y = 0; y < s->avctx->height; y++) { /* re-init variables for the next line iteration */ horiz_pred = 0; current_pixel_pair = (unsigned int *)current_line; vert_pred = s->vert_pred; mb_change_index = 0; if (!keyframe) mb_change_byte = mb_change_bits[mb_change_index++]; mb_change_byte_mask = 0x01; pixels_left = s->avctx->width; while (pixels_left > 0) { if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) { switch (y & 3) { case 0: /* if macroblock width is 2, apply C-Y-C-Y; else * apply C-Y-Y */ if (s->block_width == 2) { APPLY_C_PREDICTOR(); APPLY_Y_PREDICTOR(); OUTPUT_PIXEL_PAIR(); APPLY_C_PREDICTOR(); APPLY_Y_PREDICTOR(); OUTPUT_PIXEL_PAIR(); } else { APPLY_C_PREDICTOR(); APPLY_Y_PREDICTOR(); OUTPUT_PIXEL_PAIR(); APPLY_Y_PREDICTOR(); OUTPUT_PIXEL_PAIR(); } break; case 1: case 3: /* always apply 2 Y predictors on these iterations */ APPLY_Y_PREDICTOR(); OUTPUT_PIXEL_PAIR(); APPLY_Y_PREDICTOR(); OUTPUT_PIXEL_PAIR(); break; case 2: /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y * depending on the macroblock type */ if (s->block_type == BLOCK_2x2) { APPLY_C_PREDICTOR(); APPLY_Y_PREDICTOR(); OUTPUT_PIXEL_PAIR(); APPLY_C_PREDICTOR(); APPLY_Y_PREDICTOR(); OUTPUT_PIXEL_PAIR(); } else if (s->block_type == BLOCK_4x2) { APPLY_C_PREDICTOR(); APPLY_Y_PREDICTOR(); OUTPUT_PIXEL_PAIR(); APPLY_Y_PREDICTOR(); OUTPUT_PIXEL_PAIR(); } else { APPLY_Y_PREDICTOR(); OUTPUT_PIXEL_PAIR(); APPLY_Y_PREDICTOR(); OUTPUT_PIXEL_PAIR(); } break; } } else { /* skip (copy) four pixels, but reassign the horizontal * predictor */ *vert_pred++ = *current_pixel_pair++; horiz_pred = *current_pixel_pair - *vert_pred; *vert_pred++ = *current_pixel_pair++; } if (!keyframe) { mb_change_byte_mask <<= 1; /* next byte */ if (!mb_change_byte_mask) { mb_change_byte = mb_change_bits[mb_change_index++]; mb_change_byte_mask = 0x01; } } pixels_left -= 4; } /* next change row */ if (((y + 1) & 3) == 0) mb_change_bits += s->mb_change_bits_row_size; current_line += s->frame->linesize[0]; } } static void truemotion1_decode_24bit(TrueMotion1Context *s) { int y; int pixels_left; /* remaining pixels on this line */ unsigned int predictor_pair; unsigned int horiz_pred; unsigned int *vert_pred; unsigned int *current_pixel_pair; unsigned char *current_line = s->frame->data[0]; int keyframe = s->flags & FLAG_KEYFRAME; /* these variables are for managing the stream of macroblock change bits */ const unsigned char *mb_change_bits = s->mb_change_bits; unsigned char mb_change_byte; unsigned char mb_change_byte_mask; int mb_change_index; /* these variables are for managing the main index stream */ int index_stream_index = 0; /* yes, the index into the index stream */ int index; /* clean out the line buffer */ memset(s->vert_pred, 0, s->avctx->width * sizeof(unsigned int)); GET_NEXT_INDEX(); for (y = 0; y < s->avctx->height; y++) { /* re-init variables for the next line iteration */ horiz_pred = 0; current_pixel_pair = (unsigned int *)current_line; vert_pred = s->vert_pred; mb_change_index = 0; mb_change_byte = mb_change_bits[mb_change_index++]; mb_change_byte_mask = 0x01; pixels_left = s->avctx->width; while (pixels_left > 0) { if (keyframe || ((mb_change_byte & mb_change_byte_mask) == 0)) { switch (y & 3) { case 0: /* if macroblock width is 2, apply C-Y-C-Y; else * apply C-Y-Y */ if (s->block_width == 2) { APPLY_C_PREDICTOR_24(); APPLY_Y_PREDICTOR_24(); OUTPUT_PIXEL_PAIR(); APPLY_C_PREDICTOR_24(); APPLY_Y_PREDICTOR_24(); OUTPUT_PIXEL_PAIR(); } else { APPLY_C_PREDICTOR_24(); APPLY_Y_PREDICTOR_24(); OUTPUT_PIXEL_PAIR(); APPLY_Y_PREDICTOR_24(); OUTPUT_PIXEL_PAIR(); } break; case 1: case 3: /* always apply 2 Y predictors on these iterations */ APPLY_Y_PREDICTOR_24(); OUTPUT_PIXEL_PAIR(); APPLY_Y_PREDICTOR_24(); OUTPUT_PIXEL_PAIR(); break; case 2: /* this iteration might be C-Y-C-Y, Y-Y, or C-Y-Y * depending on the macroblock type */ if (s->block_type == BLOCK_2x2) { APPLY_C_PREDICTOR_24(); APPLY_Y_PREDICTOR_24(); OUTPUT_PIXEL_PAIR(); APPLY_C_PREDICTOR_24(); APPLY_Y_PREDICTOR_24(); OUTPUT_PIXEL_PAIR(); } else if (s->block_type == BLOCK_4x2) { APPLY_C_PREDICTOR_24(); APPLY_Y_PREDICTOR_24(); OUTPUT_PIXEL_PAIR(); APPLY_Y_PREDICTOR_24(); OUTPUT_PIXEL_PAIR(); } else { APPLY_Y_PREDICTOR_24(); OUTPUT_PIXEL_PAIR(); APPLY_Y_PREDICTOR_24(); OUTPUT_PIXEL_PAIR(); } break; } } else { /* skip (copy) four pixels, but reassign the horizontal * predictor */ *vert_pred++ = *current_pixel_pair++; horiz_pred = *current_pixel_pair - *vert_pred; *vert_pred++ = *current_pixel_pair++; } if (!keyframe) { mb_change_byte_mask <<= 1; /* next byte */ if (!mb_change_byte_mask) { mb_change_byte = mb_change_bits[mb_change_index++]; mb_change_byte_mask = 0x01; } } pixels_left -= 2; } /* next change row */ if (((y + 1) & 3) == 0) mb_change_bits += s->mb_change_bits_row_size; current_line += s->frame->linesize[0]; } } static int truemotion1_decode_frame(AVCodecContext *avctx, AVFrame *rframe, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int ret, buf_size = avpkt->size; TrueMotion1Context *s = avctx->priv_data; s->buf = buf; s->size = buf_size; if ((ret = truemotion1_decode_header(s)) < 0) return ret; if ((ret = ff_reget_buffer(avctx, s->frame, 0)) < 0) return ret; if (compression_types[s->compression].algorithm == ALGO_RGB24H) { truemotion1_decode_24bit(s); } else if (compression_types[s->compression].algorithm != ALGO_NOP) { truemotion1_decode_16bit(s); } if ((ret = av_frame_ref(rframe, s->frame)) < 0) return ret; *got_frame = 1; /* report that the buffer was completely consumed */ return buf_size; } static av_cold int truemotion1_decode_end(AVCodecContext *avctx) { TrueMotion1Context *s = avctx->priv_data; av_frame_free(&s->frame); av_freep(&s->vert_pred); return 0; } const FFCodec ff_truemotion1_decoder = { .p.name = "truemotion1", CODEC_LONG_NAME("Duck TrueMotion 1.0"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_TRUEMOTION1, .priv_data_size = sizeof(TrueMotion1Context), .init = truemotion1_decode_init, .close = truemotion1_decode_end, FF_CODEC_DECODE_CB(truemotion1_decode_frame), .p.capabilities = AV_CODEC_CAP_DR1, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, };