芝麻web文件管理V1.00
编辑当前文件:/home/qrafawbu/ffmpeg/libavcodec/takdec.c
/* * TAK decoder * Copyright (c) 2012 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * TAK (Tom's lossless Audio Kompressor) decoder * @author Paul B Mahol */ #include "libavutil/internal.h" #include "libavutil/mem_internal.h" #include "libavutil/samplefmt.h" #define CACHED_BITSTREAM_READER !ARCH_X86_32 #define BITSTREAM_READER_LE #include "audiodsp.h" #include "thread.h" #include "avcodec.h" #include "codec_internal.h" #include "unary.h" #include "tak.h" #include "takdsp.h" #define MAX_SUBFRAMES 8 ///< max number of subframes per channel #define MAX_PREDICTORS 256 typedef struct MCDParam { int8_t present; ///< decorrelation parameter availability for this channel int8_t index; ///< index into array of decorrelation types int8_t chan1; int8_t chan2; } MCDParam; typedef struct TAKDecContext { AVCodecContext *avctx; ///< parent AVCodecContext AudioDSPContext adsp; TAKDSPContext tdsp; TAKStreamInfo ti; GetBitContext gb; ///< bitstream reader initialized to start at the current frame int uval; int nb_samples; ///< number of samples in the current frame uint8_t *decode_buffer; unsigned int decode_buffer_size; int32_t *decoded[TAK_MAX_CHANNELS]; ///< decoded samples for each channel int8_t lpc_mode[TAK_MAX_CHANNELS]; int8_t sample_shift[TAK_MAX_CHANNELS]; ///< shift applied to every sample in the channel int16_t predictors[MAX_PREDICTORS]; int nb_subframes; ///< number of subframes in the current frame int16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples int subframe_scale; int8_t dmode; ///< channel decorrelation type in the current frame MCDParam mcdparams[TAK_MAX_CHANNELS]; ///< multichannel decorrelation parameters int8_t coding_mode[128]; DECLARE_ALIGNED(16, int16_t, filter)[MAX_PREDICTORS]; DECLARE_ALIGNED(16, int16_t, residues)[544]; } TAKDecContext; static const int8_t mc_dmodes[] = { 1, 3, 4, 6, }; static const uint16_t predictor_sizes[] = { 4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 160, 192, 224, 256, 0, }; static const struct CParam { int init; int escape; int scale; int aescape; int bias; } xcodes[50] = { { 0x01, 0x0000001, 0x0000001, 0x0000003, 0x0000008 }, { 0x02, 0x0000003, 0x0000001, 0x0000007, 0x0000006 }, { 0x03, 0x0000005, 0x0000002, 0x000000E, 0x000000D }, { 0x03, 0x0000003, 0x0000003, 0x000000D, 0x0000018 }, { 0x04, 0x000000B, 0x0000004, 0x000001C, 0x0000019 }, { 0x04, 0x0000006, 0x0000006, 0x000001A, 0x0000030 }, { 0x05, 0x0000016, 0x0000008, 0x0000038, 0x0000032 }, { 0x05, 0x000000C, 0x000000C, 0x0000034, 0x0000060 }, { 0x06, 0x000002C, 0x0000010, 0x0000070, 0x0000064 }, { 0x06, 0x0000018, 0x0000018, 0x0000068, 0x00000C0 }, { 0x07, 0x0000058, 0x0000020, 0x00000E0, 0x00000C8 }, { 0x07, 0x0000030, 0x0000030, 0x00000D0, 0x0000180 }, { 0x08, 0x00000B0, 0x0000040, 0x00001C0, 0x0000190 }, { 0x08, 0x0000060, 0x0000060, 0x00001A0, 0x0000300 }, { 0x09, 0x0000160, 0x0000080, 0x0000380, 0x0000320 }, { 0x09, 0x00000C0, 0x00000C0, 0x0000340, 0x0000600 }, { 0x0A, 0x00002C0, 0x0000100, 0x0000700, 0x0000640 }, { 0x0A, 0x0000180, 0x0000180, 0x0000680, 0x0000C00 }, { 0x0B, 0x0000580, 0x0000200, 0x0000E00, 0x0000C80 }, { 0x0B, 0x0000300, 0x0000300, 0x0000D00, 0x0001800 }, { 0x0C, 0x0000B00, 0x0000400, 0x0001C00, 0x0001900 }, { 0x0C, 0x0000600, 0x0000600, 0x0001A00, 0x0003000 }, { 0x0D, 0x0001600, 0x0000800, 0x0003800, 0x0003200 }, { 0x0D, 0x0000C00, 0x0000C00, 0x0003400, 0x0006000 }, { 0x0E, 0x0002C00, 0x0001000, 0x0007000, 0x0006400 }, { 0x0E, 0x0001800, 0x0001800, 0x0006800, 0x000C000 }, { 0x0F, 0x0005800, 0x0002000, 0x000E000, 0x000C800 }, { 0x0F, 0x0003000, 0x0003000, 0x000D000, 0x0018000 }, { 0x10, 0x000B000, 0x0004000, 0x001C000, 0x0019000 }, { 0x10, 0x0006000, 0x0006000, 0x001A000, 0x0030000 }, { 0x11, 0x0016000, 0x0008000, 0x0038000, 0x0032000 }, { 0x11, 0x000C000, 0x000C000, 0x0034000, 0x0060000 }, { 0x12, 0x002C000, 0x0010000, 0x0070000, 0x0064000 }, { 0x12, 0x0018000, 0x0018000, 0x0068000, 0x00C0000 }, { 0x13, 0x0058000, 0x0020000, 0x00E0000, 0x00C8000 }, { 0x13, 0x0030000, 0x0030000, 0x00D0000, 0x0180000 }, { 0x14, 0x00B0000, 0x0040000, 0x01C0000, 0x0190000 }, { 0x14, 0x0060000, 0x0060000, 0x01A0000, 0x0300000 }, { 0x15, 0x0160000, 0x0080000, 0x0380000, 0x0320000 }, { 0x15, 0x00C0000, 0x00C0000, 0x0340000, 0x0600000 }, { 0x16, 0x02C0000, 0x0100000, 0x0700000, 0x0640000 }, { 0x16, 0x0180000, 0x0180000, 0x0680000, 0x0C00000 }, { 0x17, 0x0580000, 0x0200000, 0x0E00000, 0x0C80000 }, { 0x17, 0x0300000, 0x0300000, 0x0D00000, 0x1800000 }, { 0x18, 0x0B00000, 0x0400000, 0x1C00000, 0x1900000 }, { 0x18, 0x0600000, 0x0600000, 0x1A00000, 0x3000000 }, { 0x19, 0x1600000, 0x0800000, 0x3800000, 0x3200000 }, { 0x19, 0x0C00000, 0x0C00000, 0x3400000, 0x6000000 }, { 0x1A, 0x2C00000, 0x1000000, 0x7000000, 0x6400000 }, { 0x1A, 0x1800000, 0x1800000, 0x6800000, 0xC000000 }, }; static int set_bps_params(AVCodecContext *avctx) { switch (avctx->bits_per_raw_sample) { case 8: avctx->sample_fmt = AV_SAMPLE_FMT_U8P; break; case 16: avctx->sample_fmt = AV_SAMPLE_FMT_S16P; break; case 24: avctx->sample_fmt = AV_SAMPLE_FMT_S32P; break; default: av_log(avctx, AV_LOG_ERROR, "invalid/unsupported bits per sample: %d\n", avctx->bits_per_raw_sample); return AVERROR_INVALIDDATA; } return 0; } static void set_sample_rate_params(AVCodecContext *avctx) { TAKDecContext *s = avctx->priv_data; int shift; if (avctx->sample_rate < 11025) { shift = 3; } else if (avctx->sample_rate < 22050) { shift = 2; } else if (avctx->sample_rate < 44100) { shift = 1; } else { shift = 0; } s->uval = FFALIGN(avctx->sample_rate + 511LL >> 9, 4) << shift; s->subframe_scale = FFALIGN(avctx->sample_rate + 511LL >> 9, 4) << 1; } static av_cold int tak_decode_init(AVCodecContext *avctx) { TAKDecContext *s = avctx->priv_data; ff_audiodsp_init(&s->adsp); ff_takdsp_init(&s->tdsp); s->avctx = avctx; avctx->bits_per_raw_sample = avctx->bits_per_coded_sample; set_sample_rate_params(avctx); return set_bps_params(avctx); } static void decode_lpc(int32_t *coeffs, int mode, int length) { int i; if (length < 2) return; if (mode == 1) { unsigned a1 = *coeffs++; for (i = 0; i < length - 1 >> 1; i++) { *coeffs += a1; coeffs[1] += (unsigned)*coeffs; a1 = coeffs[1]; coeffs += 2; } if (length - 1 & 1) *coeffs += a1; } else if (mode == 2) { unsigned a1 = coeffs[1]; unsigned a2 = a1 + *coeffs; coeffs[1] = a2; if (length > 2) { coeffs += 2; for (i = 0; i < length - 2 >> 1; i++) { unsigned a3 = *coeffs + a1; unsigned a4 = a3 + a2; *coeffs = a4; a1 = coeffs[1] + a3; a2 = a1 + a4; coeffs[1] = a2; coeffs += 2; } if (length & 1) *coeffs += a1 + a2; } } else if (mode == 3) { unsigned a1 = coeffs[1]; unsigned a2 = a1 + *coeffs; coeffs[1] = a2; if (length > 2) { unsigned a3 = coeffs[2]; unsigned a4 = a3 + a1; unsigned a5 = a4 + a2; coeffs[2] = a5; coeffs += 3; for (i = 0; i < length - 3; i++) { a3 += *coeffs; a4 += a3; a5 += a4; *coeffs = a5; coeffs++; } } } } static int decode_segment(TAKDecContext *s, int8_t mode, int32_t *decoded, int len) { struct CParam code; GetBitContext *gb = &s->gb; int i; if (!mode) { memset(decoded, 0, len * sizeof(*decoded)); return 0; } if (mode > FF_ARRAY_ELEMS(xcodes)) return AVERROR_INVALIDDATA; code = xcodes[mode - 1]; for (i = 0; i < len; i++) { unsigned x = get_bits_long(gb, code.init); if (x >= code.escape && get_bits1(gb)) { x |= 1 << code.init; if (x >= code.aescape) { unsigned scale = get_unary(gb, 1, 9); if (scale == 9) { int scale_bits = get_bits(gb, 3); if (scale_bits > 0) { if (scale_bits == 7) { scale_bits += get_bits(gb, 5); if (scale_bits > 29) return AVERROR_INVALIDDATA; } scale = get_bits_long(gb, scale_bits) + 1; x += code.scale * scale; } x += code.bias; } else x += code.scale * scale - code.escape; } else x -= code.escape; } decoded[i] = (x >> 1) ^ -(x & 1); } return 0; } static int decode_residues(TAKDecContext *s, int32_t *decoded, int length) { GetBitContext *gb = &s->gb; int i, mode, ret; if (length > s->nb_samples) return AVERROR_INVALIDDATA; if (get_bits1(gb)) { int wlength, rval; wlength = length / s->uval; rval = length - (wlength * s->uval); if (rval < s->uval / 2) rval += s->uval; else wlength++; if (wlength <= 1 || wlength > 128) return AVERROR_INVALIDDATA; s->coding_mode[0] = mode = get_bits(gb, 6); for (i = 1; i < wlength; i++) { int c = get_unary(gb, 1, 6); switch (c) { case 6: mode = get_bits(gb, 6); break; case 5: case 4: case 3: { /* mode += sign ? (1 - c) : (c - 1) */ int sign = get_bits1(gb); mode += (-sign ^ (c - 1)) + sign; break; } case 2: mode++; break; case 1: mode--; break; } s->coding_mode[i] = mode; } i = 0; while (i < wlength) { int len = 0; mode = s->coding_mode[i]; do { if (i >= wlength - 1) len += rval; else len += s->uval; i++; if (i == wlength) break; } while (s->coding_mode[i] == mode); if ((ret = decode_segment(s, mode, decoded, len)) < 0) return ret; decoded += len; } } else { mode = get_bits(gb, 6); if ((ret = decode_segment(s, mode, decoded, length)) < 0) return ret; } return 0; } static int get_bits_esc4(GetBitContext *gb) { if (get_bits1(gb)) return get_bits(gb, 4) + 1; else return 0; } static int decode_subframe(TAKDecContext *s, int32_t *decoded, int subframe_size, int prev_subframe_size) { GetBitContext *gb = &s->gb; int x, y, i, j, ret = 0; int dshift, size, filter_quant, filter_order; int tfilter[MAX_PREDICTORS]; if (!get_bits1(gb)) return decode_residues(s, decoded, subframe_size); filter_order = predictor_sizes[get_bits(gb, 4)]; if (prev_subframe_size > 0 && get_bits1(gb)) { if (filter_order > prev_subframe_size) return AVERROR_INVALIDDATA; decoded -= filter_order; subframe_size += filter_order; if (filter_order > subframe_size) return AVERROR_INVALIDDATA; } else { int lpc_mode; if (filter_order > subframe_size) return AVERROR_INVALIDDATA; lpc_mode = get_bits(gb, 2); if (lpc_mode > 2) return AVERROR_INVALIDDATA; if ((ret = decode_residues(s, decoded, filter_order)) < 0) return ret; if (lpc_mode) decode_lpc(decoded, lpc_mode, filter_order); } dshift = get_bits_esc4(gb); size = get_bits1(gb) + 6; filter_quant = 10; if (get_bits1(gb)) { filter_quant -= get_bits(gb, 3) + 1; if (filter_quant < 3) return AVERROR_INVALIDDATA; } s->predictors[0] = get_sbits(gb, 10); s->predictors[1] = get_sbits(gb, 10); s->predictors[2] = get_sbits(gb, size) * (1 << (10 - size)); s->predictors[3] = get_sbits(gb, size) * (1 << (10 - size)); if (filter_order > 4) { int tmp = size - get_bits1(gb); for (i = 4; i < filter_order; i++) { if (!(i & 3)) x = tmp - get_bits(gb, 2); s->predictors[i] = get_sbits(gb, x) * (1 << (10 - size)); } } tfilter[0] = s->predictors[0] * 64; for (i = 1; i < filter_order; i++) { uint32_t *p1 = &tfilter[0]; uint32_t *p2 = &tfilter[i - 1]; for (j = 0; j < (i + 1) / 2; j++) { x = *p1 + ((int32_t)(s->predictors[i] * *p2 + 256) >> 9); *p2 += (int32_t)(s->predictors[i] * *p1 + 256) >> 9; *p1++ = x; p2--; } tfilter[i] = s->predictors[i] * 64; } x = 1 << (32 - (15 - filter_quant)); y = 1 << ((15 - filter_quant) - 1); for (i = 0, j = filter_order - 1; i < filter_order / 2; i++, j--) { s->filter[j] = x - ((tfilter[i] + y) >> (15 - filter_quant)); s->filter[i] = x - ((tfilter[j] + y) >> (15 - filter_quant)); } if ((ret = decode_residues(s, &decoded[filter_order], subframe_size - filter_order)) < 0) return ret; for (i = 0; i < filter_order; i++) s->residues[i] = *decoded++ >> dshift; y = FF_ARRAY_ELEMS(s->residues) - filter_order; x = subframe_size - filter_order; while (x > 0) { int tmp = FFMIN(y, x); for (i = 0; i < tmp; i++) { int v = 1 << (filter_quant - 1); if (filter_order & -16) v += (unsigned)s->adsp.scalarproduct_int16(&s->residues[i], s->filter, filter_order & -16); for (j = filter_order & -16; j < filter_order; j += 4) { v += s->residues[i + j + 3] * (unsigned)s->filter[j + 3] + s->residues[i + j + 2] * (unsigned)s->filter[j + 2] + s->residues[i + j + 1] * (unsigned)s->filter[j + 1] + s->residues[i + j ] * (unsigned)s->filter[j ]; } v = (av_clip_intp2(v >> filter_quant, 13) * (1 << dshift)) - (unsigned)*decoded; *decoded++ = v; s->residues[filter_order + i] = v >> dshift; } x -= tmp; if (x > 0) memcpy(s->residues, &s->residues[y], 2 * filter_order); } return 0; } static int decode_channel(TAKDecContext *s, int chan) { AVCodecContext *avctx = s->avctx; GetBitContext *gb = &s->gb; int32_t *decoded = s->decoded[chan]; int left = s->nb_samples - 1; int i = 0, ret, prev = 0; s->sample_shift[chan] = get_bits_esc4(gb); if (s->sample_shift[chan] >= avctx->bits_per_raw_sample) return AVERROR_INVALIDDATA; *decoded++ = get_sbits(gb, avctx->bits_per_raw_sample - s->sample_shift[chan]); s->lpc_mode[chan] = get_bits(gb, 2); s->nb_subframes = get_bits(gb, 3) + 1; if (s->nb_subframes > 1) { if (get_bits_left(gb) < (s->nb_subframes - 1) * 6) return AVERROR_INVALIDDATA; for (; i < s->nb_subframes - 1; i++) { int v = get_bits(gb, 6); s->subframe_len[i] = (v - prev) * s->subframe_scale; if (s->subframe_len[i] <= 0) return AVERROR_INVALIDDATA; left -= s->subframe_len[i]; prev = v; } if (left <= 0) return AVERROR_INVALIDDATA; } s->subframe_len[i] = left; prev = 0; for (i = 0; i < s->nb_subframes; i++) { if ((ret = decode_subframe(s, decoded, s->subframe_len[i], prev)) < 0) return ret; decoded += s->subframe_len[i]; prev = s->subframe_len[i]; } return 0; } static int decorrelate(TAKDecContext *s, int c1, int c2, int length) { GetBitContext *gb = &s->gb; int32_t *p1 = s->decoded[c1] + (s->dmode > 5); int32_t *p2 = s->decoded[c2] + (s->dmode > 5); int32_t bp1 = p1[0]; int32_t bp2 = p2[0]; int i; int dshift, dfactor; length += s->dmode < 6; switch (s->dmode) { case 1: /* left/side */ s->tdsp.decorrelate_ls(p1, p2, length); break; case 2: /* side/right */ s->tdsp.decorrelate_sr(p1, p2, length); break; case 3: /* side/mid */ s->tdsp.decorrelate_sm(p1, p2, length); break; case 4: /* side/left with scale factor */ FFSWAP(int32_t*, p1, p2); FFSWAP(int32_t, bp1, bp2); case 5: /* side/right with scale factor */ dshift = get_bits_esc4(gb); dfactor = get_sbits(gb, 10); s->tdsp.decorrelate_sf(p1, p2, length, dshift, dfactor); break; case 6: FFSWAP(int32_t*, p1, p2); case 7: { int length2, order_half, filter_order, dval1, dval2; int tmp, x, code_size; if (length < 256) return AVERROR_INVALIDDATA; dshift = get_bits_esc4(gb); filter_order = 8 << get_bits1(gb); dval1 = get_bits1(gb); dval2 = get_bits1(gb); for (i = 0; i < filter_order; i++) { if (!(i & 3)) code_size = 14 - get_bits(gb, 3); s->filter[i] = get_sbits(gb, code_size); } order_half = filter_order / 2; length2 = length - (filter_order - 1); /* decorrelate beginning samples */ if (dval1) { for (i = 0; i < order_half; i++) { int32_t a = p1[i]; int32_t b = p2[i]; p1[i] = a + b; } } /* decorrelate ending samples */ if (dval2) { for (i = length2 + order_half; i < length; i++) { int32_t a = p1[i]; int32_t b = p2[i]; p1[i] = a + b; } } for (i = 0; i < filter_order; i++) s->residues[i] = *p2++ >> dshift; p1 += order_half; x = FF_ARRAY_ELEMS(s->residues) - filter_order; for (; length2 > 0; length2 -= tmp) { tmp = FFMIN(length2, x); for (i = 0; i < tmp - (tmp == length2); i++) s->residues[filter_order + i] = *p2++ >> dshift; for (i = 0; i < tmp; i++) { int v = 1 << 9; if (filter_order == 16) { v += s->adsp.scalarproduct_int16(&s->residues[i], s->filter, filter_order); } else { v += s->residues[i + 7] * s->filter[7] + s->residues[i + 6] * s->filter[6] + s->residues[i + 5] * s->filter[5] + s->residues[i + 4] * s->filter[4] + s->residues[i + 3] * s->filter[3] + s->residues[i + 2] * s->filter[2] + s->residues[i + 1] * s->filter[1] + s->residues[i ] * s->filter[0]; } v = av_clip_intp2(v >> 10, 13) * (1U << dshift) - *p1; *p1++ = v; } memmove(s->residues, &s->residues[tmp], 2 * filter_order); } break; } } if (s->dmode > 0 && s->dmode < 6) { p1[0] = bp1; p2[0] = bp2; } return 0; } static int tak_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame_ptr, AVPacket *pkt) { TAKDecContext *s = avctx->priv_data; GetBitContext *gb = &s->gb; int chan, i, ret, hsize; if (pkt->size < TAK_MIN_FRAME_HEADER_BYTES) return AVERROR_INVALIDDATA; if ((ret = init_get_bits8(gb, pkt->data, pkt->size)) < 0) return ret; if ((ret = ff_tak_decode_frame_header(avctx, gb, &s->ti, 0)) < 0) return ret; hsize = get_bits_count(gb) / 8; if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_COMPLIANT)) { if (ff_tak_check_crc(pkt->data, hsize)) { av_log(avctx, AV_LOG_ERROR, "CRC error\n"); if (avctx->err_recognition & AV_EF_EXPLODE) return AVERROR_INVALIDDATA; } } if (s->ti.codec != TAK_CODEC_MONO_STEREO && s->ti.codec != TAK_CODEC_MULTICHANNEL) { avpriv_report_missing_feature(avctx, "TAK codec type %d", s->ti.codec); return AVERROR_PATCHWELCOME; } if (s->ti.data_type) { av_log(avctx, AV_LOG_ERROR, "unsupported data type: %d\n", s->ti.data_type); return AVERROR_INVALIDDATA; } if (s->ti.codec == TAK_CODEC_MONO_STEREO && s->ti.channels > 2) { av_log(avctx, AV_LOG_ERROR, "invalid number of channels: %d\n", s->ti.channels); return AVERROR_INVALIDDATA; } if (s->ti.channels > 6) { av_log(avctx, AV_LOG_ERROR, "unsupported number of channels: %d\n", s->ti.channels); return AVERROR_INVALIDDATA; } if (s->ti.frame_samples <= 0) { av_log(avctx, AV_LOG_ERROR, "unsupported/invalid number of samples\n"); return AVERROR_INVALIDDATA; } avctx->bits_per_raw_sample = s->ti.bps; if ((ret = set_bps_params(avctx)) < 0) return ret; if (s->ti.sample_rate != avctx->sample_rate) { avctx->sample_rate = s->ti.sample_rate; set_sample_rate_params(avctx); } av_channel_layout_uninit(&avctx->ch_layout); if (s->ti.ch_layout) { av_channel_layout_from_mask(&avctx->ch_layout, s->ti.ch_layout); } else { avctx->ch_layout.order = AV_CHANNEL_ORDER_UNSPEC; avctx->ch_layout.nb_channels = s->ti.channels; } s->nb_samples = s->ti.last_frame_samples ? s->ti.last_frame_samples : s->ti.frame_samples; frame->nb_samples = s->nb_samples; if ((ret = ff_thread_get_buffer(avctx, frame, 0)) < 0) return ret; ff_thread_finish_setup(avctx); if (avctx->bits_per_raw_sample <= 16) { int buf_size = av_samples_get_buffer_size(NULL, avctx->ch_layout.nb_channels, s->nb_samples, AV_SAMPLE_FMT_S32P, 0); if (buf_size < 0) return buf_size; av_fast_malloc(&s->decode_buffer, &s->decode_buffer_size, buf_size); if (!s->decode_buffer) return AVERROR(ENOMEM); ret = av_samples_fill_arrays((uint8_t **)s->decoded, NULL, s->decode_buffer, avctx->ch_layout.nb_channels, s->nb_samples, AV_SAMPLE_FMT_S32P, 0); if (ret < 0) return ret; } else { for (chan = 0; chan < avctx->ch_layout.nb_channels; chan++) s->decoded[chan] = (int32_t *)frame->extended_data[chan]; } if (s->nb_samples < 16) { for (chan = 0; chan < avctx->ch_layout.nb_channels; chan++) { int32_t *decoded = s->decoded[chan]; for (i = 0; i < s->nb_samples; i++) decoded[i] = get_sbits(gb, avctx->bits_per_raw_sample); } } else { if (s->ti.codec == TAK_CODEC_MONO_STEREO) { for (chan = 0; chan < avctx->ch_layout.nb_channels; chan++) if (ret = decode_channel(s, chan)) return ret; if (avctx->ch_layout.nb_channels == 2) { s->nb_subframes = get_bits(gb, 1) + 1; if (s->nb_subframes > 1) { s->subframe_len[1] = get_bits(gb, 6); } s->dmode = get_bits(gb, 3); if (ret = decorrelate(s, 0, 1, s->nb_samples - 1)) return ret; } } else if (s->ti.codec == TAK_CODEC_MULTICHANNEL) { if (get_bits1(gb)) { int ch_mask = 0; chan = get_bits(gb, 4) + 1; if (chan > avctx->ch_layout.nb_channels) return AVERROR_INVALIDDATA; for (i = 0; i < chan; i++) { int nbit = get_bits(gb, 4); if (nbit >= avctx->ch_layout.nb_channels) return AVERROR_INVALIDDATA; if (ch_mask & 1 << nbit) return AVERROR_INVALIDDATA; s->mcdparams[i].present = get_bits1(gb); if (s->mcdparams[i].present) { s->mcdparams[i].index = get_bits(gb, 2); s->mcdparams[i].chan2 = get_bits(gb, 4); if (s->mcdparams[i].chan2 >= avctx->ch_layout.nb_channels) { av_log(avctx, AV_LOG_ERROR, "invalid channel 2 (%d) for %d channel(s)\n", s->mcdparams[i].chan2, avctx->ch_layout.nb_channels); return AVERROR_INVALIDDATA; } if (s->mcdparams[i].index == 1) { if ((nbit == s->mcdparams[i].chan2) || (ch_mask & 1 << s->mcdparams[i].chan2)) return AVERROR_INVALIDDATA; ch_mask |= 1 << s->mcdparams[i].chan2; } else if (!(ch_mask & 1 << s->mcdparams[i].chan2)) { return AVERROR_INVALIDDATA; } } s->mcdparams[i].chan1 = nbit; ch_mask |= 1 << nbit; } } else { chan = avctx->ch_layout.nb_channels; for (i = 0; i < chan; i++) { s->mcdparams[i].present = 0; s->mcdparams[i].chan1 = i; } } for (i = 0; i < chan; i++) { if (s->mcdparams[i].present && s->mcdparams[i].index == 1) if (ret = decode_channel(s, s->mcdparams[i].chan2)) return ret; if (ret = decode_channel(s, s->mcdparams[i].chan1)) return ret; if (s->mcdparams[i].present) { s->dmode = mc_dmodes[s->mcdparams[i].index]; if (ret = decorrelate(s, s->mcdparams[i].chan2, s->mcdparams[i].chan1, s->nb_samples - 1)) return ret; } } } for (chan = 0; chan < avctx->ch_layout.nb_channels; chan++) { int32_t *decoded = s->decoded[chan]; if (s->lpc_mode[chan]) decode_lpc(decoded, s->lpc_mode[chan], s->nb_samples); if (s->sample_shift[chan] > 0) for (i = 0; i < s->nb_samples; i++) decoded[i] *= 1U << s->sample_shift[chan]; } } align_get_bits(gb); skip_bits(gb, 24); if (get_bits_left(gb) < 0) av_log(avctx, AV_LOG_DEBUG, "overread\n"); else if (get_bits_left(gb) > 0) av_log(avctx, AV_LOG_DEBUG, "underread\n"); if (avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_COMPLIANT)) { if (ff_tak_check_crc(pkt->data + hsize, get_bits_count(gb) / 8 - hsize)) { av_log(avctx, AV_LOG_ERROR, "CRC error\n"); if (avctx->err_recognition & AV_EF_EXPLODE) return AVERROR_INVALIDDATA; } } /* convert to output buffer */ switch (avctx->sample_fmt) { case AV_SAMPLE_FMT_U8P: for (chan = 0; chan < avctx->ch_layout.nb_channels; chan++) { uint8_t *samples = (uint8_t *)frame->extended_data[chan]; int32_t *decoded = s->decoded[chan]; for (i = 0; i < s->nb_samples; i++) samples[i] = decoded[i] + 0x80U; } break; case AV_SAMPLE_FMT_S16P: for (chan = 0; chan < avctx->ch_layout.nb_channels; chan++) { int16_t *samples = (int16_t *)frame->extended_data[chan]; int32_t *decoded = s->decoded[chan]; for (i = 0; i < s->nb_samples; i++) samples[i] = decoded[i]; } break; case AV_SAMPLE_FMT_S32P: for (chan = 0; chan < avctx->ch_layout.nb_channels; chan++) { int32_t *samples = (int32_t *)frame->extended_data[chan]; for (i = 0; i < s->nb_samples; i++) samples[i] *= 1U << 8; } break; } *got_frame_ptr = 1; return pkt->size; } #if HAVE_THREADS static int update_thread_context(AVCodecContext *dst, const AVCodecContext *src) { TAKDecContext *tsrc = src->priv_data; TAKDecContext *tdst = dst->priv_data; if (dst == src) return 0; memcpy(&tdst->ti, &tsrc->ti, sizeof(TAKStreamInfo)); return 0; } #endif static av_cold int tak_decode_close(AVCodecContext *avctx) { TAKDecContext *s = avctx->priv_data; av_freep(&s->decode_buffer); return 0; } const FFCodec ff_tak_decoder = { .p.name = "tak", CODEC_LONG_NAME("TAK (Tom's lossless Audio Kompressor)"), .p.type = AVMEDIA_TYPE_AUDIO, .p.id = AV_CODEC_ID_TAK, .priv_data_size = sizeof(TAKDecContext), .init = tak_decode_init, .close = tak_decode_close, FF_CODEC_DECODE_CB(tak_decode_frame), UPDATE_THREAD_CONTEXT(update_thread_context), .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_CHANNEL_CONF, .p.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_U8P, AV_SAMPLE_FMT_S16P, AV_SAMPLE_FMT_S32P, AV_SAMPLE_FMT_NONE }, };