芝麻web文件管理V1.00
编辑当前文件:/home/qrafawbu/ffmpeg/libavcodec/faandct.c
/* * Floating point AAN DCT * this implementation is based upon the IJG integer AAN DCT (see jfdctfst.c) * * Copyright (c) 2003 Michael Niedermayer
* Copyright (c) 2003 Roman Shaposhnik * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /** * @file * @brief * Floating point AAN DCT * @author Michael Niedermayer
*/ #include "faandct.h" #include "libavutil/internal.h" #include "libavutil/libm.h" typedef float FLOAT; /* numbers generated by arbitrary precision arithmetic followed by truncation to 36 fractional digits (enough for a 128-bit IEEE quad, see /usr/include/math.h for this approach). Unfortunately, long double is not always available correctly, e.g ppc has issues. TODO: add L suffixes when ppc and toolchains sort out their stuff. */ #define B0 1.000000000000000000000000000000000000 #define B1 0.720959822006947913789091890943021267 // (cos(pi*1/16)sqrt(2))^-1 #define B2 0.765366864730179543456919968060797734 // (cos(pi*2/16)sqrt(2))^-1 #define B3 0.850430094767256448766702844371412325 // (cos(pi*3/16)sqrt(2))^-1 #define B4 1.000000000000000000000000000000000000 // (cos(pi*4/16)sqrt(2))^-1 #define B5 1.272758580572833938461007018281767032 // (cos(pi*5/16)sqrt(2))^-1 #define B6 1.847759065022573512256366378793576574 // (cos(pi*6/16)sqrt(2))^-1 #define B7 3.624509785411551372409941227504289587 // (cos(pi*7/16)sqrt(2))^-1 #define A1 M_SQRT1_2 // cos(pi*4/16) #define A2 0.54119610014619698435 // cos(pi*6/16)sqrt(2) #define A5 0.38268343236508977170 // cos(pi*6/16) #define A4 1.30656296487637652774 // cos(pi*2/16)sqrt(2) static const FLOAT postscale[64]={ B0*B0, B0*B1, B0*B2, B0*B3, B0*B4, B0*B5, B0*B6, B0*B7, B1*B0, B1*B1, B1*B2, B1*B3, B1*B4, B1*B5, B1*B6, B1*B7, B2*B0, B2*B1, B2*B2, B2*B3, B2*B4, B2*B5, B2*B6, B2*B7, B3*B0, B3*B1, B3*B2, B3*B3, B3*B4, B3*B5, B3*B6, B3*B7, B4*B0, B4*B1, B4*B2, B4*B3, B4*B4, B4*B5, B4*B6, B4*B7, B5*B0, B5*B1, B5*B2, B5*B3, B5*B4, B5*B5, B5*B6, B5*B7, B6*B0, B6*B1, B6*B2, B6*B3, B6*B4, B6*B5, B6*B6, B6*B7, B7*B0, B7*B1, B7*B2, B7*B3, B7*B4, B7*B5, B7*B6, B7*B7, }; static av_always_inline void row_fdct(FLOAT temp[64], int16_t *data) { FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; FLOAT tmp10, tmp11, tmp12, tmp13; FLOAT z2, z4, z11, z13; int i; for (i=0; i<8*8; i+=8) { tmp0= data[0 + i] + data[7 + i]; tmp7= data[0 + i] - data[7 + i]; tmp1= data[1 + i] + data[6 + i]; tmp6= data[1 + i] - data[6 + i]; tmp2= data[2 + i] + data[5 + i]; tmp5= data[2 + i] - data[5 + i]; tmp3= data[3 + i] + data[4 + i]; tmp4= data[3 + i] - data[4 + i]; tmp10= tmp0 + tmp3; tmp13= tmp0 - tmp3; tmp11= tmp1 + tmp2; tmp12= tmp1 - tmp2; temp[0 + i]= tmp10 + tmp11; temp[4 + i]= tmp10 - tmp11; tmp12 += tmp13; tmp12 *= A1; temp[2 + i]= tmp13 + tmp12; temp[6 + i]= tmp13 - tmp12; tmp4 += tmp5; tmp5 += tmp6; tmp6 += tmp7; z2= tmp4*(A2+A5) - tmp6*A5; z4= tmp6*(A4-A5) + tmp4*A5; tmp5*=A1; z11= tmp7 + tmp5; z13= tmp7 - tmp5; temp[5 + i]= z13 + z2; temp[3 + i]= z13 - z2; temp[1 + i]= z11 + z4; temp[7 + i]= z11 - z4; } } void ff_faandct(int16_t *data) { FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; FLOAT tmp10, tmp11, tmp12, tmp13; FLOAT z2, z4, z11, z13; FLOAT temp[64]; int i; emms_c(); row_fdct(temp, data); for (i=0; i<8; i++) { tmp0= temp[8*0 + i] + temp[8*7 + i]; tmp7= temp[8*0 + i] - temp[8*7 + i]; tmp1= temp[8*1 + i] + temp[8*6 + i]; tmp6= temp[8*1 + i] - temp[8*6 + i]; tmp2= temp[8*2 + i] + temp[8*5 + i]; tmp5= temp[8*2 + i] - temp[8*5 + i]; tmp3= temp[8*3 + i] + temp[8*4 + i]; tmp4= temp[8*3 + i] - temp[8*4 + i]; tmp10= tmp0 + tmp3; tmp13= tmp0 - tmp3; tmp11= tmp1 + tmp2; tmp12= tmp1 - tmp2; data[8*0 + i]= lrintf(postscale[8*0 + i] * (tmp10 + tmp11)); data[8*4 + i]= lrintf(postscale[8*4 + i] * (tmp10 - tmp11)); tmp12 += tmp13; tmp12 *= A1; data[8*2 + i]= lrintf(postscale[8*2 + i] * (tmp13 + tmp12)); data[8*6 + i]= lrintf(postscale[8*6 + i] * (tmp13 - tmp12)); tmp4 += tmp5; tmp5 += tmp6; tmp6 += tmp7; z2= tmp4*(A2+A5) - tmp6*A5; z4= tmp6*(A4-A5) + tmp4*A5; tmp5*=A1; z11= tmp7 + tmp5; z13= tmp7 - tmp5; data[8*5 + i]= lrintf(postscale[8*5 + i] * (z13 + z2)); data[8*3 + i]= lrintf(postscale[8*3 + i] * (z13 - z2)); data[8*1 + i]= lrintf(postscale[8*1 + i] * (z11 + z4)); data[8*7 + i]= lrintf(postscale[8*7 + i] * (z11 - z4)); } } void ff_faandct248(int16_t *data) { FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; FLOAT tmp10, tmp11, tmp12, tmp13; FLOAT temp[64]; int i; emms_c(); row_fdct(temp, data); for (i=0; i<8; i++) { tmp0 = temp[8*0 + i] + temp[8*1 + i]; tmp1 = temp[8*2 + i] + temp[8*3 + i]; tmp2 = temp[8*4 + i] + temp[8*5 + i]; tmp3 = temp[8*6 + i] + temp[8*7 + i]; tmp4 = temp[8*0 + i] - temp[8*1 + i]; tmp5 = temp[8*2 + i] - temp[8*3 + i]; tmp6 = temp[8*4 + i] - temp[8*5 + i]; tmp7 = temp[8*6 + i] - temp[8*7 + i]; tmp10 = tmp0 + tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; tmp13 = tmp0 - tmp3; data[8*0 + i] = lrintf(postscale[8*0 + i] * (tmp10 + tmp11)); data[8*4 + i] = lrintf(postscale[8*4 + i] * (tmp10 - tmp11)); tmp12 += tmp13; tmp12 *= A1; data[8*2 + i] = lrintf(postscale[8*2 + i] * (tmp13 + tmp12)); data[8*6 + i] = lrintf(postscale[8*6 + i] * (tmp13 - tmp12)); tmp10 = tmp4 + tmp7; tmp11 = tmp5 + tmp6; tmp12 = tmp5 - tmp6; tmp13 = tmp4 - tmp7; data[8*1 + i] = lrintf(postscale[8*0 + i] * (tmp10 + tmp11)); data[8*5 + i] = lrintf(postscale[8*4 + i] * (tmp10 - tmp11)); tmp12 += tmp13; tmp12 *= A1; data[8*3 + i] = lrintf(postscale[8*2 + i] * (tmp13 + tmp12)); data[8*7 + i] = lrintf(postscale[8*6 + i] * (tmp13 - tmp12)); } }