芝麻web文件管理V1.00
编辑当前文件:/home/qrafawbu/ffmpeg/libavcodec/dvenc.c
/* * DV encoder * Copyright (c) 2003 Roman Shaposhnik * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * quant_deadzone code and fixes sponsored by NOA GmbH */ /** * @file * DV encoder */ #include "config.h" #include "libavutil/attributes.h" #include "libavutil/internal.h" #include "libavutil/mem_internal.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavutil/thread.h" #include "avcodec.h" #include "codec_internal.h" #include "dv.h" #include "dv_internal.h" #include "dv_profile_internal.h" #include "dv_tablegen.h" #include "encode.h" #include "fdctdsp.h" #include "mathops.h" #include "me_cmp.h" #include "pixblockdsp.h" #include "put_bits.h" typedef struct DVEncContext { const AVClass *class; const AVDVProfile *sys; const AVFrame *frame; AVCodecContext *avctx; uint8_t *buf; void (*get_pixels)(int16_t *block, const uint8_t *pixels, ptrdiff_t linesize); void (*fdct[2])(int16_t *block); me_cmp_func ildct_cmp; DVwork_chunk work_chunks[4 * 12 * 27]; int quant_deadzone; } DVEncContext; static av_cold int dvvideo_encode_init(AVCodecContext *avctx) { DVEncContext *s = avctx->priv_data; FDCTDSPContext fdsp; MECmpContext mecc; PixblockDSPContext pdsp; int ret; s->avctx = avctx; if (avctx->chroma_sample_location != AVCHROMA_LOC_TOPLEFT) { const char *name = av_chroma_location_name(avctx->chroma_sample_location); av_log(avctx, AV_LOG_WARNING, "Only top-left chroma location is supported " "in DV, input value is: %s\n", name ? name : "unknown"); if (avctx->strict_std_compliance > FF_COMPLIANCE_NORMAL) return AVERROR(EINVAL); } s->sys = av_dv_codec_profile2(avctx->width, avctx->height, avctx->pix_fmt, avctx->time_base); if (!s->sys) { av_log(avctx, AV_LOG_ERROR, "Found no DV profile for %ix%i %s video. " "Valid DV profiles are:\n", avctx->width, avctx->height, av_get_pix_fmt_name(avctx->pix_fmt)); ff_dv_print_profiles(avctx, AV_LOG_ERROR); return AVERROR(EINVAL); } ret = ff_dv_init_dynamic_tables(s->work_chunks, s->sys); if (ret < 0) { av_log(avctx, AV_LOG_ERROR, "Error initializing work tables.\n"); return ret; } memset(&fdsp,0, sizeof(fdsp)); memset(&mecc,0, sizeof(mecc)); memset(&pdsp,0, sizeof(pdsp)); ff_fdctdsp_init(&fdsp, avctx); ff_me_cmp_init(&mecc, avctx); ff_pixblockdsp_init(&pdsp, avctx); ff_set_cmp(&mecc, mecc.ildct_cmp, avctx->ildct_cmp); s->get_pixels = pdsp.get_pixels; s->ildct_cmp = mecc.ildct_cmp[5]; s->fdct[0] = fdsp.fdct; s->fdct[1] = fdsp.fdct248; #if !CONFIG_HARDCODED_TABLES { static AVOnce init_static_once = AV_ONCE_INIT; ff_thread_once(&init_static_once, dv_vlc_map_tableinit); } #endif return 0; } /* bit budget for AC only in 5 MBs */ static const int vs_total_ac_bits_hd = (68 * 6 + 52*2) * 5; static const int vs_total_ac_bits = (100 * 4 + 68 * 2) * 5; static const int mb_area_start[5] = { 1, 6, 21, 43, 64 }; #if CONFIG_SMALL /* Convert run and level (where level != 0) pair into VLC, returning bit size */ static av_always_inline int dv_rl2vlc(int run, int level, int sign, uint32_t *vlc) { int size; if (run < DV_VLC_MAP_RUN_SIZE && level < DV_VLC_MAP_LEV_SIZE) { *vlc = dv_vlc_map[run][level].vlc | sign; size = dv_vlc_map[run][level].size; } else { if (level < DV_VLC_MAP_LEV_SIZE) { *vlc = dv_vlc_map[0][level].vlc | sign; size = dv_vlc_map[0][level].size; } else { *vlc = 0xfe00 | (level << 1) | sign; size = 16; } if (run) { *vlc |= ((run < 16) ? dv_vlc_map[run - 1][0].vlc : (0x1f80 | (run - 1))) << size; size += (run < 16) ? dv_vlc_map[run - 1][0].size : 13; } } return size; } static av_always_inline int dv_rl2vlc_size(int run, int level) { int size; if (run < DV_VLC_MAP_RUN_SIZE && level < DV_VLC_MAP_LEV_SIZE) { size = dv_vlc_map[run][level].size; } else { size = (level < DV_VLC_MAP_LEV_SIZE) ? dv_vlc_map[0][level].size : 16; if (run) size += (run < 16) ? dv_vlc_map[run - 1][0].size : 13; } return size; } #else static av_always_inline int dv_rl2vlc(int run, int l, int sign, uint32_t *vlc) { *vlc = dv_vlc_map[run][l].vlc | sign; return dv_vlc_map[run][l].size; } static av_always_inline int dv_rl2vlc_size(int run, int l) { return dv_vlc_map[run][l].size; } #endif typedef struct EncBlockInfo { int area_q[4]; int bit_size[4]; int prev[5]; int cur_ac; int cno; int dct_mode; int16_t mb[64]; uint8_t next[64]; uint8_t sign[64]; uint8_t partial_bit_count; uint32_t partial_bit_buffer; /* we can't use uint16_t here */ /* used by DV100 only: a copy of the weighted and classified but not-yet-quantized AC coefficients. This is necessary for re-quantizing at different steps. */ int16_t save[64]; int min_qlevel; /* DV100 only: minimum qlevel (for AC coefficients >255) */ } EncBlockInfo; static av_always_inline PutBitContext *dv_encode_ac(EncBlockInfo *bi, PutBitContext *pb_pool, PutBitContext *pb_end) { int prev, bits_left; PutBitContext *pb = pb_pool; int size = bi->partial_bit_count; uint32_t vlc = bi->partial_bit_buffer; bi->partial_bit_count = bi->partial_bit_buffer = 0; for (;;) { /* Find suitable storage space */ for (; size > (bits_left = put_bits_left(pb)); pb++) { if (bits_left) { size -= bits_left; put_bits(pb, bits_left, vlc >> size); vlc = av_mod_uintp2(vlc, size); } if (pb + 1 >= pb_end) { bi->partial_bit_count = size; bi->partial_bit_buffer = vlc; return pb; } } /* Store VLC */ put_bits(pb, size, vlc); if (bi->cur_ac >= 64) break; /* Construct the next VLC */ prev = bi->cur_ac; bi->cur_ac = bi->next[prev]; if (bi->cur_ac < 64) { size = dv_rl2vlc(bi->cur_ac - prev - 1, bi->mb[bi->cur_ac], bi->sign[bi->cur_ac], &vlc); } else { size = 4; vlc = 6; /* End Of Block stamp */ } } return pb; } static av_always_inline int dv_guess_dct_mode(DVEncContext *s, const uint8_t *data, ptrdiff_t linesize) { if (s->avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) { int ps = s->ildct_cmp(NULL, data, NULL, linesize, 8) - 400; if (ps > 0) { int is = s->ildct_cmp(NULL, data, NULL, linesize * 2, 4) + s->ildct_cmp(NULL, data + linesize, NULL, linesize * 2, 4); return ps > is; } } return 0; } static const int dv_weight_bits = 18; static const int dv_weight_88[64] = { 131072, 257107, 257107, 242189, 252167, 242189, 235923, 237536, 237536, 235923, 229376, 231390, 223754, 231390, 229376, 222935, 224969, 217965, 217965, 224969, 222935, 200636, 218652, 211916, 212325, 211916, 218652, 200636, 188995, 196781, 205965, 206433, 206433, 205965, 196781, 188995, 185364, 185364, 200636, 200704, 200636, 185364, 185364, 174609, 180568, 195068, 195068, 180568, 174609, 170091, 175557, 189591, 175557, 170091, 165371, 170627, 170627, 165371, 160727, 153560, 160727, 144651, 144651, 136258, }; static const int dv_weight_248[64] = { 131072, 262144, 257107, 257107, 242189, 242189, 242189, 242189, 237536, 237536, 229376, 229376, 200636, 200636, 224973, 224973, 223754, 223754, 235923, 235923, 229376, 229376, 217965, 217965, 211916, 211916, 196781, 196781, 185364, 185364, 206433, 206433, 211916, 211916, 222935, 222935, 200636, 200636, 205964, 205964, 200704, 200704, 180568, 180568, 175557, 175557, 195068, 195068, 185364, 185364, 188995, 188995, 174606, 174606, 175557, 175557, 170627, 170627, 153560, 153560, 165371, 165371, 144651, 144651, }; /* setting this to 1 results in a faster codec but * somewhat lower image quality */ #define DV100_SACRIFICE_QUALITY_FOR_SPEED 1 #define DV100_ENABLE_FINER 1 /* pack combination of QNO and CNO into a single 8-bit value */ #define DV100_MAKE_QLEVEL(qno,cno) ((qno<<2) | (cno)) #define DV100_QLEVEL_QNO(qlevel) (qlevel>>2) #define DV100_QLEVEL_CNO(qlevel) (qlevel&0x3) #define DV100_NUM_QLEVELS 31 /* The quantization step is determined by a combination of QNO and CNO. We refer to these combinations as "qlevels" (this term is our own, it's not mentioned in the spec). We use CNO, a multiplier on the quantization step, to "fill in the gaps" between quantization steps associated with successive values of QNO. e.g. there is no QNO for a quantization step of 10, but we can use QNO=5 CNO=1 to get the same result. The table below encodes combinations of QNO and CNO in order of increasing quantization coarseness. */ static const uint8_t dv100_qlevels[DV100_NUM_QLEVELS] = { DV100_MAKE_QLEVEL( 1,0), // 1*1= 1 DV100_MAKE_QLEVEL( 1,0), // 1*1= 1 DV100_MAKE_QLEVEL( 2,0), // 2*1= 2 DV100_MAKE_QLEVEL( 3,0), // 3*1= 3 DV100_MAKE_QLEVEL( 4,0), // 4*1= 4 DV100_MAKE_QLEVEL( 5,0), // 5*1= 5 DV100_MAKE_QLEVEL( 6,0), // 6*1= 6 DV100_MAKE_QLEVEL( 7,0), // 7*1= 7 DV100_MAKE_QLEVEL( 8,0), // 8*1= 8 DV100_MAKE_QLEVEL( 5,1), // 5*2=10 DV100_MAKE_QLEVEL( 6,1), // 6*2=12 DV100_MAKE_QLEVEL( 7,1), // 7*2=14 DV100_MAKE_QLEVEL( 9,0), // 16*1=16 DV100_MAKE_QLEVEL(10,0), // 18*1=18 DV100_MAKE_QLEVEL(11,0), // 20*1=20 DV100_MAKE_QLEVEL(12,0), // 22*1=22 DV100_MAKE_QLEVEL(13,0), // 24*1=24 DV100_MAKE_QLEVEL(14,0), // 28*1=28 DV100_MAKE_QLEVEL( 9,1), // 16*2=32 DV100_MAKE_QLEVEL(10,1), // 18*2=36 DV100_MAKE_QLEVEL(11,1), // 20*2=40 DV100_MAKE_QLEVEL(12,1), // 22*2=44 DV100_MAKE_QLEVEL(13,1), // 24*2=48 DV100_MAKE_QLEVEL(15,0), // 52*1=52 DV100_MAKE_QLEVEL(14,1), // 28*2=56 DV100_MAKE_QLEVEL( 9,2), // 16*4=64 DV100_MAKE_QLEVEL(10,2), // 18*4=72 DV100_MAKE_QLEVEL(11,2), // 20*4=80 DV100_MAKE_QLEVEL(12,2), // 22*4=88 DV100_MAKE_QLEVEL(13,2), // 24*4=96 // ... DV100_MAKE_QLEVEL(15,3), // 52*8=416 }; static const int dv100_min_bias = 0; static const int dv100_chroma_bias = 0; static const int dv100_starting_qno = 1; #if DV100_SACRIFICE_QUALITY_FOR_SPEED static const int dv100_qlevel_inc = 4; #else static const int dv100_qlevel_inc = 1; #endif // 1/qstep, shifted up by 16 bits static const int dv100_qstep_bits = 16; static const int dv100_qstep_inv[16] = { 65536, 65536, 32768, 21845, 16384, 13107, 10923, 9362, 8192, 4096, 3641, 3277, 2979, 2731, 2341, 1260, }; /* DV100 weights are pre-zigzagged, inverted and multiplied by 2^16 (in DV100 the AC components are divided by the spec weights) */ static const int dv_weight_1080[2][64] = { { 8192, 65536, 65536, 61681, 61681, 61681, 58254, 58254, 58254, 58254, 58254, 58254, 55188, 58254, 58254, 55188, 55188, 55188, 55188, 55188, 55188, 24966, 27594, 26214, 26214, 26214, 27594, 24966, 23831, 24385, 25575, 25575, 25575, 25575, 24385, 23831, 23302, 23302, 24966, 24966, 24966, 23302, 23302, 21845, 22795, 24385, 24385, 22795, 21845, 21400, 21845, 23831, 21845, 21400, 10382, 10700, 10700, 10382, 10082, 9620, 10082, 9039, 9039, 8525, }, { 8192, 65536, 65536, 61681, 61681, 61681, 41943, 41943, 41943, 41943, 40330, 41943, 40330, 41943, 40330, 40330, 40330, 38836, 38836, 40330, 40330, 24966, 27594, 26214, 26214, 26214, 27594, 24966, 23831, 24385, 25575, 25575, 25575, 25575, 24385, 23831, 11523, 11523, 12483, 12483, 12483, 11523, 11523, 10923, 11275, 12193, 12193, 11275, 10923, 5323, 5490, 5924, 5490, 5323, 5165, 5323, 5323, 5165, 5017, 4788, 5017, 4520, 4520, 4263, } }; static const int dv_weight_720[2][64] = { { 8192, 65536, 65536, 61681, 61681, 61681, 58254, 58254, 58254, 58254, 58254, 58254, 55188, 58254, 58254, 55188, 55188, 55188, 55188, 55188, 55188, 24966, 27594, 26214, 26214, 26214, 27594, 24966, 23831, 24385, 25575, 25575, 25575, 25575, 24385, 23831, 15420, 15420, 16644, 16644, 16644, 15420, 15420, 10923, 11398, 12193, 12193, 11398, 10923, 10700, 10923, 11916, 10923, 10700, 5191, 5350, 5350, 5191, 5041, 4810, 5041, 4520, 4520, 4263, }, { 8192, 43691, 43691, 40330, 40330, 40330, 29127, 29127, 29127, 29127, 29127, 29127, 27594, 29127, 29127, 27594, 27594, 27594, 27594, 27594, 27594, 12483, 13797, 13107, 13107, 13107, 13797, 12483, 11916, 12193, 12788, 12788, 12788, 12788, 12193, 11916, 5761, 5761, 6242, 6242, 6242, 5761, 5761, 5461, 5638, 5461, 6096, 5638, 5461, 2661, 2745, 2962, 2745, 2661, 2583, 2661, 2661, 2583, 2509, 2394, 2509, 2260, 2260, 2131, } }; static av_always_inline int dv_set_class_number_sd(DVEncContext *s, int16_t *blk, EncBlockInfo *bi, const uint8_t *zigzag_scan, const int *weight, int bias) { int i, area; /* We offer two different methods for class number assignment: the * method suggested in SMPTE 314M Table 22, and an improved * method. The SMPTE method is very conservative; it assigns class * 3 (i.e. severe quantization) to any block where the largest AC * component is greater than 36. FFmpeg's DV encoder tracks AC bit * consumption precisely, so there is no need to bias most blocks * towards strongly lossy compression. Instead, we assign class 2 * to most blocks, and use class 3 only when strictly necessary * (for blocks whose largest AC component exceeds 255). */ #if 0 /* SMPTE spec method */ static const int classes[] = { 12, 24, 36, 0xffff }; #else /* improved FFmpeg method */ static const int classes[] = { -1, -1, 255, 0xffff }; #endif int max = classes[0]; int prev = 0; const unsigned deadzone = s->quant_deadzone; const unsigned threshold = 2 * deadzone; bi->mb[0] = blk[0]; for (area = 0; area < 4; area++) { bi->prev[area] = prev; bi->bit_size[area] = 1; // 4 areas 4 bits for EOB :) for (i = mb_area_start[area]; i < mb_area_start[area + 1]; i++) { int level = blk[zigzag_scan[i]]; if (level + deadzone > threshold) { bi->sign[i] = (level >> 31) & 1; /* Weight it and shift down into range, adding for rounding. * The extra division by a factor of 2^4 reverses the 8x * expansion of the DCT AND the 2x doubling of the weights. */ level = (FFABS(level) * weight[i] + (1 << (dv_weight_bits + 3))) >> (dv_weight_bits + 4); if (!level) continue; bi->mb[i] = level; if (level > max) max = level; bi->bit_size[area] += dv_rl2vlc_size(i - prev - 1, level); bi->next[prev] = i; prev = i; } } } bi->next[prev] = i; for (bi->cno = 0; max > classes[bi->cno]; bi->cno++) ; bi->cno += bias; if (bi->cno >= 3) { bi->cno = 3; prev = 0; i = bi->next[prev]; for (area = 0; area < 4; area++) { bi->prev[area] = prev; bi->bit_size[area] = 1; // 4 areas 4 bits for EOB :) for (; i < mb_area_start[area + 1]; i = bi->next[i]) { bi->mb[i] >>= 1; if (bi->mb[i]) { bi->bit_size[area] += dv_rl2vlc_size(i - prev - 1, bi->mb[i]); bi->next[prev] = i; prev = i; } } } bi->next[prev] = i; } return bi->bit_size[0] + bi->bit_size[1] + bi->bit_size[2] + bi->bit_size[3]; } /* this function just copies the DCT coefficients and performs the initial (non-)quantization. */ static inline void dv_set_class_number_hd(DVEncContext *s, int16_t *blk, EncBlockInfo *bi, const uint8_t *zigzag_scan, const int *weight, int bias) { int i, max = 0; /* the first quantization (none at all) */ bi->area_q[0] = 1; /* weigh AC components and store to save[] */ /* (i=0 is the DC component; we only include it to make the number of loop iterations even, for future possible SIMD optimization) */ for (i = 0; i < 64; i += 2) { int level0, level1; /* get the AC component (in zig-zag order) */ level0 = blk[zigzag_scan[i+0]]; level1 = blk[zigzag_scan[i+1]]; /* extract sign and make it the lowest bit */ bi->sign[i+0] = (level0>>31)&1; bi->sign[i+1] = (level1>>31)&1; /* take absolute value of the level */ level0 = FFABS(level0); level1 = FFABS(level1); /* weigh it */ level0 = (level0*weight[i+0] + 4096 + (1<<17)) >> 18; level1 = (level1*weight[i+1] + 4096 + (1<<17)) >> 18; /* save unquantized value */ bi->save[i+0] = level0; bi->save[i+1] = level1; /* find max component */ if (bi->save[i+0] > max) max = bi->save[i+0]; if (bi->save[i+1] > max) max = bi->save[i+1]; } /* copy DC component */ bi->mb[0] = blk[0]; /* the EOB code is 4 bits */ bi->bit_size[0] = 4; bi->bit_size[1] = bi->bit_size[2] = bi->bit_size[3] = 0; /* ensure that no AC coefficients are cut off */ bi->min_qlevel = ((max+256) >> 8); bi->area_q[0] = 25; /* set to an "impossible" value */ bi->cno = 0; } static av_always_inline int dv_init_enc_block(EncBlockInfo* bi, const uint8_t *data, int linesize, DVEncContext *s, int chroma) { LOCAL_ALIGNED_16(int16_t, blk, [64]); bi->area_q[0] = bi->area_q[1] = bi->area_q[2] = bi->area_q[3] = 0; bi->partial_bit_count = 0; bi->partial_bit_buffer = 0; bi->cur_ac = 0; if (data) { if (DV_PROFILE_IS_HD(s->sys)) { s->get_pixels(blk, data, linesize * (1 << bi->dct_mode)); s->fdct[0](blk); } else { bi->dct_mode = dv_guess_dct_mode(s, data, linesize); s->get_pixels(blk, data, linesize); s->fdct[bi->dct_mode](blk); } } else { /* We rely on the fact that encoding all zeros leads to an immediate EOB, which is precisely what the spec calls for in the "dummy" blocks. */ memset(blk, 0, 64*sizeof(*blk)); bi->dct_mode = 0; } if (DV_PROFILE_IS_HD(s->sys)) { const int *weights; if (s->sys->height == 1080) { weights = dv_weight_1080[chroma]; } else { /* 720p */ weights = dv_weight_720[chroma]; } dv_set_class_number_hd(s, blk, bi, ff_zigzag_direct, weights, dv100_min_bias+chroma*dv100_chroma_bias); } else { dv_set_class_number_sd(s, blk, bi, bi->dct_mode ? ff_dv_zigzag248_direct : ff_zigzag_direct, bi->dct_mode ? dv_weight_248 : dv_weight_88, chroma); } return bi->bit_size[0] + bi->bit_size[1] + bi->bit_size[2] + bi->bit_size[3]; } /* DV100 quantize Perform quantization by divinding the AC component by the qstep. As an optimization we use a fixed-point integer multiply instead of a divide. */ static av_always_inline int dv100_quantize(int level, int qsinv) { /* this code is equivalent to */ /* return (level + qs/2) / qs; */ return (level * qsinv + 1024 + (1<<(dv100_qstep_bits-1))) >> dv100_qstep_bits; /* the extra +1024 is needed to make the rounding come out right. */ /* I (DJM) have verified that the results are exactly the same as division for level 0-2048 at all QNOs. */ } static int dv100_actual_quantize(EncBlockInfo *b, int qlevel) { int prev, k, qsinv; int qno = DV100_QLEVEL_QNO(dv100_qlevels[qlevel]); int cno = DV100_QLEVEL_CNO(dv100_qlevels[qlevel]); if (b->area_q[0] == qno && b->cno == cno) return b->bit_size[0]; qsinv = dv100_qstep_inv[qno]; /* record the new qstep */ b->area_q[0] = qno; b->cno = cno; /* reset encoded size (EOB = 4 bits) */ b->bit_size[0] = 4; /* visit nonzero components and quantize */ prev = 0; for (k = 1; k < 64; k++) { /* quantize */ int ac = dv100_quantize(b->save[k], qsinv) >> cno; if (ac) { if (ac > 255) ac = 255; b->mb[k] = ac; b->bit_size[0] += dv_rl2vlc_size(k - prev - 1, ac); b->next[prev] = k; prev = k; } } b->next[prev] = k; return b->bit_size[0]; } static inline void dv_guess_qnos_hd(EncBlockInfo *blks, int *qnos) { EncBlockInfo *b; int min_qlevel[5]; int qlevels[5]; int size[5]; int i, j; /* cache block sizes at hypothetical qlevels */ uint16_t size_cache[5*8][DV100_NUM_QLEVELS] = {{0}}; /* get minimum qlevels */ for (i = 0; i < 5; i++) { min_qlevel[i] = 1; for (j = 0; j < 8; j++) { if (blks[8*i+j].min_qlevel > min_qlevel[i]) min_qlevel[i] = blks[8*i+j].min_qlevel; } } /* initialize sizes */ for (i = 0; i < 5; i++) { qlevels[i] = dv100_starting_qno; if (qlevels[i] < min_qlevel[i]) qlevels[i] = min_qlevel[i]; qnos[i] = DV100_QLEVEL_QNO(dv100_qlevels[qlevels[i]]); size[i] = 0; for (j = 0; j < 8; j++) { size_cache[8*i+j][qlevels[i]] = dv100_actual_quantize(&blks[8*i+j], qlevels[i]); size[i] += size_cache[8*i+j][qlevels[i]]; } } /* must we go coarser? */ if (size[0]+size[1]+size[2]+size[3]+size[4] > vs_total_ac_bits_hd) { int largest = size[0] % 5; /* 'random' number */ int qlevels_done = 0; do { /* find the macroblock with the lowest qlevel */ for (i = 0; i < 5; i++) { if (qlevels[i] < qlevels[largest]) largest = i; } i = largest; /* ensure that we don't enter infinite loop */ largest = (largest+1) % 5; /* quantize a little bit more */ qlevels[i] += dv100_qlevel_inc; if (qlevels[i] > DV100_NUM_QLEVELS-1) { qlevels[i] = DV100_NUM_QLEVELS-1; qlevels_done++; } qnos[i] = DV100_QLEVEL_QNO(dv100_qlevels[qlevels[i]]); size[i] = 0; /* for each block */ b = &blks[8*i]; for (j = 0; j < 8; j++, b++) { /* accumulate block size into macroblock */ if(size_cache[8*i+j][qlevels[i]] == 0) { /* it is safe to use actual_quantize() here because we only go from finer to coarser, and it saves the final actual_quantize() down below */ size_cache[8*i+j][qlevels[i]] = dv100_actual_quantize(b, qlevels[i]); } size[i] += size_cache[8*i+j][qlevels[i]]; } /* for each block */ } while (vs_total_ac_bits_hd < size[0] + size[1] + size[2] + size[3] + size[4] && qlevels_done < 5); // can we go finer? } else if (DV100_ENABLE_FINER && size[0]+size[1]+size[2]+size[3]+size[4] < vs_total_ac_bits_hd) { int save_qlevel; int largest = size[0] % 5; /* 'random' number */ while (qlevels[0] > min_qlevel[0] || qlevels[1] > min_qlevel[1] || qlevels[2] > min_qlevel[2] || qlevels[3] > min_qlevel[3] || qlevels[4] > min_qlevel[4]) { /* find the macroblock with the highest qlevel */ for (i = 0; i < 5; i++) { if (qlevels[i] > min_qlevel[i] && qlevels[i] > qlevels[largest]) largest = i; } i = largest; /* ensure that we don't enter infinite loop */ largest = (largest+1) % 5; if (qlevels[i] <= min_qlevel[i]) { /* can't unquantize any more */ continue; } /* quantize a little bit less */ save_qlevel = qlevels[i]; qlevels[i] -= dv100_qlevel_inc; if (qlevels[i] < min_qlevel[i]) qlevels[i] = min_qlevel[i]; qnos[i] = DV100_QLEVEL_QNO(dv100_qlevels[qlevels[i]]); size[i] = 0; /* for each block */ b = &blks[8*i]; for (j = 0; j < 8; j++, b++) { /* accumulate block size into macroblock */ if(size_cache[8*i+j][qlevels[i]] == 0) { size_cache[8*i+j][qlevels[i]] = dv100_actual_quantize(b, qlevels[i]); } size[i] += size_cache[8*i+j][qlevels[i]]; } /* for each block */ /* did we bust the limit? */ if (vs_total_ac_bits_hd < size[0] + size[1] + size[2] + size[3] + size[4]) { /* go back down and exit */ qlevels[i] = save_qlevel; qnos[i] = DV100_QLEVEL_QNO(dv100_qlevels[qlevels[i]]); break; } } } /* now do the actual quantization */ for (i = 0; i < 5; i++) { /* for each block */ b = &blks[8*i]; size[i] = 0; for (j = 0; j < 8; j++, b++) { /* accumulate block size into macroblock */ size[i] += dv100_actual_quantize(b, qlevels[i]); } /* for each block */ } } static inline void dv_guess_qnos(EncBlockInfo *blks, int *qnos) { int size[5]; int i, j, k, a, prev, a2; EncBlockInfo *b; size[0] = size[1] = size[2] = size[3] = size[4] = 1 << 24; do { b = blks; for (i = 0; i < 5; i++) { if (!qnos[i]) continue; qnos[i]--; size[i] = 0; for (j = 0; j < 6; j++, b++) { for (a = 0; a < 4; a++) { if (b->area_q[a] != ff_dv_quant_shifts[qnos[i] + ff_dv_quant_offset[b->cno]][a]) { b->bit_size[a] = 1; // 4 areas 4 bits for EOB :) b->area_q[a]++; prev = b->prev[a]; av_assert2(b->next[prev] >= mb_area_start[a + 1] || b->mb[prev]); for (k = b->next[prev]; k < mb_area_start[a + 1]; k = b->next[k]) { b->mb[k] >>= 1; if (b->mb[k]) { b->bit_size[a] += dv_rl2vlc_size(k - prev - 1, b->mb[k]); prev = k; } else { if (b->next[k] >= mb_area_start[a + 1] && b->next[k] < 64) { for (a2 = a + 1; b->next[k] >= mb_area_start[a2 + 1]; a2++) b->prev[a2] = prev; av_assert2(a2 < 4); av_assert2(b->mb[b->next[k]]); b->bit_size[a2] += dv_rl2vlc_size(b->next[k] - prev - 1, b->mb[b->next[k]]) - dv_rl2vlc_size(b->next[k] - k - 1, b->mb[b->next[k]]); av_assert2(b->prev[a2] == k && (a2 + 1 >= 4 || b->prev[a2 + 1] != k)); b->prev[a2] = prev; } b->next[prev] = b->next[k]; } } b->prev[a + 1] = prev; } size[i] += b->bit_size[a]; } } if (vs_total_ac_bits >= size[0] + size[1] + size[2] + size[3] + size[4]) return; } } while (qnos[0] | qnos[1] | qnos[2] | qnos[3] | qnos[4]); for (a = 2; a == 2 || vs_total_ac_bits < size[0]; a += a) { b = blks; size[0] = 5 * 6 * 4; // EOB for (j = 0; j < 6 * 5; j++, b++) { prev = b->prev[0]; for (k = b->next[prev]; k < 64; k = b->next[k]) { if (b->mb[k] < a && b->mb[k] > -a) { b->next[prev] = b->next[k]; } else { size[0] += dv_rl2vlc_size(k - prev - 1, b->mb[k]); prev = k; } } } } } /* update all cno values into the blocks, over-writing the old values without touching anything else. (only used for DV100) */ static inline void dv_revise_cnos(uint8_t *dif, EncBlockInfo *blk, const AVDVProfile *profile) { uint8_t *data; int mb_index, i; for (mb_index = 0; mb_index < 5; mb_index++) { data = dif + mb_index*80 + 4; for (i = 0; i < profile->bpm; i++) { /* zero out the class number */ data[1] &= 0xCF; /* add the new one */ data[1] |= blk[profile->bpm*mb_index+i].cno << 4; data += profile->block_sizes[i] >> 3; } } } static int dv_encode_video_segment(AVCodecContext *avctx, void *arg) { DVEncContext *s = avctx->priv_data; DVwork_chunk *work_chunk = arg; int mb_index, i, j; int mb_x, mb_y, c_offset; ptrdiff_t linesize, y_stride; const uint8_t *y_ptr; uint8_t *dif, *p; LOCAL_ALIGNED_8(uint8_t, scratch, [128]); EncBlockInfo enc_blks[5 * DV_MAX_BPM]; PutBitContext pbs[5 * DV_MAX_BPM]; PutBitContext *pb; EncBlockInfo *enc_blk; int vs_bit_size = 0; int qnos[5]; int *qnosp = &qnos[0]; p = dif = &s->buf[work_chunk->buf_offset * 80]; enc_blk = &enc_blks[0]; for (mb_index = 0; mb_index < 5; mb_index++) { dv_calculate_mb_xy(s->sys, s->buf, work_chunk, mb_index, &mb_x, &mb_y); qnos[mb_index] = DV_PROFILE_IS_HD(s->sys) ? 1 : 15; y_ptr = s->frame->data[0] + (mb_y * s->frame->linesize[0] + mb_x) * 8; linesize = s->frame->linesize[0]; if (s->sys->height == 1080 && mb_y < 134) enc_blk->dct_mode = dv_guess_dct_mode(s, y_ptr, linesize); else enc_blk->dct_mode = 0; for (i = 1; i < 8; i++) enc_blk[i].dct_mode = enc_blk->dct_mode; /* initializing luminance blocks */ if ((s->sys->pix_fmt == AV_PIX_FMT_YUV420P) || (s->sys->pix_fmt == AV_PIX_FMT_YUV411P && mb_x >= (704 / 8)) || (s->sys->height >= 720 && mb_y != 134)) { y_stride = s->frame->linesize[0] * (1 << (3*!enc_blk->dct_mode)); } else { y_stride = 16; } y_ptr = s->frame->data[0] + (mb_y * s->frame->linesize[0] + mb_x) * 8; linesize = s->frame->linesize[0]; if (s->sys->video_stype == 4) { /* SD 422 */ vs_bit_size += dv_init_enc_block(enc_blk + 0, y_ptr, linesize, s, 0) + dv_init_enc_block(enc_blk + 1, NULL, linesize, s, 0) + dv_init_enc_block(enc_blk + 2, y_ptr + 8, linesize, s, 0) + dv_init_enc_block(enc_blk + 3, NULL, linesize, s, 0); } else { vs_bit_size += dv_init_enc_block(enc_blk + 0, y_ptr, linesize, s, 0) + dv_init_enc_block(enc_blk + 1, y_ptr + 8, linesize, s, 0) + dv_init_enc_block(enc_blk + 2, y_ptr + y_stride, linesize, s, 0) + dv_init_enc_block(enc_blk + 3, y_ptr + 8 + y_stride, linesize, s, 0); } enc_blk += 4; /* initializing chrominance blocks */ c_offset = ((mb_y >> (s->sys->pix_fmt == AV_PIX_FMT_YUV420P)) * s->frame->linesize[1] + (mb_x >> ((s->sys->pix_fmt == AV_PIX_FMT_YUV411P) ? 2 : 1))) * 8; for (j = 2; j; j--) { const uint8_t *c_ptr = s->frame->data[j] + c_offset; linesize = s->frame->linesize[j]; y_stride = (mb_y == 134) ? 8 : (s->frame->linesize[j] * (1 << (3*!enc_blk->dct_mode))); if (s->sys->pix_fmt == AV_PIX_FMT_YUV411P && mb_x >= (704 / 8)) { uint8_t *b = scratch; for (i = 0; i < 8; i++) { const uint8_t *d = c_ptr + linesize * 8; b[0] = c_ptr[0]; b[1] = c_ptr[1]; b[2] = c_ptr[2]; b[3] = c_ptr[3]; b[4] = d[0]; b[5] = d[1]; b[6] = d[2]; b[7] = d[3]; c_ptr += linesize; b += 16; } c_ptr = scratch; linesize = 16; } vs_bit_size += dv_init_enc_block(enc_blk++, c_ptr, linesize, s, 1); if (s->sys->bpm == 8) vs_bit_size += dv_init_enc_block(enc_blk++, c_ptr + y_stride, linesize, s, 1); } } if (DV_PROFILE_IS_HD(s->sys)) { /* unconditional */ dv_guess_qnos_hd(&enc_blks[0], qnosp); } else if (vs_total_ac_bits < vs_bit_size) { dv_guess_qnos(&enc_blks[0], qnosp); } /* DIF encoding process */ for (j = 0; j < 5 * s->sys->bpm;) { int start_mb = j; p[3] = *qnosp++; p += 4; /* First pass over individual cells only */ for (i = 0; i < s->sys->bpm; i++, j++) { int sz = s->sys->block_sizes[i] >> 3; init_put_bits(&pbs[j], p, sz); put_sbits(&pbs[j], 9, ((enc_blks[j].mb[0] >> 3) - 1024 + 2) >> 2); put_bits(&pbs[j], 1, DV_PROFILE_IS_HD(s->sys) && i ? 1 : enc_blks[j].dct_mode); put_bits(&pbs[j], 2, enc_blks[j].cno); dv_encode_ac(&enc_blks[j], &pbs[j], &pbs[j + 1]); p += sz; } /* Second pass over each MB space */ pb = &pbs[start_mb]; for (i = 0; i < s->sys->bpm; i++) if (enc_blks[start_mb + i].partial_bit_count) pb = dv_encode_ac(&enc_blks[start_mb + i], pb, &pbs[start_mb + s->sys->bpm]); } /* Third and final pass over the whole video segment space */ pb = &pbs[0]; for (j = 0; j < 5 * s->sys->bpm; j++) { if (enc_blks[j].partial_bit_count) pb = dv_encode_ac(&enc_blks[j], pb, &pbs[s->sys->bpm * 5]); if (enc_blks[j].partial_bit_count) av_log(avctx, AV_LOG_ERROR, "ac bitstream overflow\n"); } for (j = 0; j < 5 * s->sys->bpm; j++) { flush_put_bits(&pbs[j]); memset(put_bits_ptr(&pbs[j]), 0xff, put_bytes_left(&pbs[j], 0)); } if (DV_PROFILE_IS_HD(s->sys)) dv_revise_cnos(dif, enc_blks, s->sys); return 0; } static inline int dv_write_pack(enum DVPackType pack_id, DVEncContext *c, uint8_t *buf) { /* * Here's what SMPTE314M says about these two: * (page 6) APTn, AP1n, AP2n, AP3n: These data shall be identical * as track application IDs (APTn = 001, AP1n = * 001, AP2n = 001, AP3n = 001), if the source signal * comes from a digital VCR. If the signal source is * unknown, all bits for these data shall be set to 1. * (page 12) STYPE: STYPE defines a signal type of video signal * 00000b = 4:1:1 compression * 00100b = 4:2:2 compression * XXXXXX = Reserved * Now, I've got two problems with these statements: * 1. it looks like APT == 111b should be a safe bet, but it isn't. * It seems that for PAL as defined in IEC 61834 we have to set * APT to 000 and for SMPTE314M to 001. * 2. It is not at all clear what STYPE is used for 4:2:0 PAL * compression scheme (if any). */ uint8_t aspect = 0; int apt = (c->sys->pix_fmt == AV_PIX_FMT_YUV420P ? 0 : 1); int fs; if (c->avctx->height >= 720) fs = c->avctx->height == 720 || c->frame->top_field_first ? 0x40 : 0x00; else fs = c->frame->top_field_first ? 0x00 : 0x40; if (DV_PROFILE_IS_HD(c->sys) || (int)(av_q2d(c->avctx->sample_aspect_ratio) * c->avctx->width / c->avctx->height * 10) >= 17) /* HD formats are always 16:9 */ aspect = 0x02; buf[0] = (uint8_t) pack_id; switch (pack_id) { case DV_HEADER525: /* I can't imagine why these two weren't defined as real */ case DV_HEADER625: /* packs in SMPTE314M -- they definitely look like ones */ buf[1] = 0xf8 | /* reserved -- always 1 */ (apt & 0x07); /* APT: Track application ID */ buf[2] = (0 << 7) | /* TF1: audio data is 0 - valid; 1 - invalid */ (0x0f << 3) | /* reserved -- always 1 */ (apt & 0x07); /* AP1: Audio application ID */ buf[3] = (0 << 7) | /* TF2: video data is 0 - valid; 1 - invalid */ (0x0f << 3) | /* reserved -- always 1 */ (apt & 0x07); /* AP2: Video application ID */ buf[4] = (0 << 7) | /* TF3: subcode(SSYB) is 0 - valid; 1 - invalid */ (0x0f << 3) | /* reserved -- always 1 */ (apt & 0x07); /* AP3: Subcode application ID */ break; case DV_VIDEO_SOURCE: buf[1] = 0xff; /* reserved -- always 1 */ buf[2] = (1 << 7) | /* B/W: 0 - b/w, 1 - color */ (1 << 6) | /* following CLF is valid - 0, invalid - 1 */ (3 << 4) | /* CLF: color frames ID (see ITU-R BT.470-4) */ 0xf; /* reserved -- always 1 */ buf[3] = (3 << 6) | /* reserved -- always 1 */ (c->sys->dsf << 5) | /* system: 60fields/50fields */ c->sys->video_stype; /* signal type video compression */ buf[4] = 0xff; /* VISC: 0xff -- no information */ break; case DV_VIDEO_CONTROL: buf[1] = (0 << 6) | /* Copy generation management (CGMS) 0 -- free */ 0x3f; /* reserved -- always 1 */ buf[2] = 0xc8 | /* reserved -- always b11001xxx */ aspect; buf[3] = (1 << 7) | /* frame/field flag 1 -- frame, 0 -- field */ fs | /* first/second field flag 0 -- field 2, 1 -- field 1 */ (1 << 5) | /* frame change flag 0 -- same picture as before, 1 -- different */ (1 << 4) | /* 1 - interlaced, 0 - noninterlaced */ 0xc; /* reserved -- always b1100 */ buf[4] = 0xff; /* reserved -- always 1 */ break; default: buf[1] = buf[2] = buf[3] = buf[4] = 0xff; } return 5; } static inline int dv_write_dif_id(enum DVSectionType t, uint8_t chan_num, uint8_t seq_num, uint8_t dif_num, uint8_t *buf) { int fsc = chan_num & 1; int fsp = 1 - (chan_num >> 1); buf[0] = (uint8_t) t; /* Section type */ buf[1] = (seq_num << 4) | /* DIF seq number 0-9 for 525/60; 0-11 for 625/50 */ (fsc << 3) | /* FSC: for 50 and 100Mb/s 0 - first channel; 1 - second */ (fsp << 2) | /* FSP: for 100Mb/s 1 - channels 0-1; 0 - channels 2-3 */ 3; /* reserved -- always 1 */ buf[2] = dif_num; /* DIF block number Video: 0-134, Audio: 0-8 */ return 3; } static inline int dv_write_ssyb_id(uint8_t syb_num, uint8_t fr, uint8_t *buf) { if (syb_num == 0 || syb_num == 6) { buf[0] = (fr << 7) | /* FR ID 1 - first half of each channel; 0 - second */ (0 << 4) | /* AP3 (Subcode application ID) */ 0x0f; /* reserved -- always 1 */ } else if (syb_num == 11) { buf[0] = (fr << 7) | /* FR ID 1 - first half of each channel; 0 - second */ 0x7f; /* reserved -- always 1 */ } else { buf[0] = (fr << 7) | /* FR ID 1 - first half of each channel; 0 - second */ (0 << 4) | /* APT (Track application ID) */ 0x0f; /* reserved -- always 1 */ } buf[1] = 0xf0 | /* reserved -- always 1 */ (syb_num & 0x0f); /* SSYB number 0 - 11 */ buf[2] = 0xff; /* reserved -- always 1 */ return 3; } static void dv_format_frame(DVEncContext *c, uint8_t *buf) { int chan, i, j, k; /* We work with 720p frames split in half. The odd half-frame is chan 2,3 */ int chan_offset = 2*(c->sys->height == 720 && c->avctx->frame_number & 1); for (chan = 0; chan < c->sys->n_difchan; chan++) { for (i = 0; i < c->sys->difseg_size; i++) { memset(buf, 0xff, 80 * 6); /* first 6 DIF blocks are for control data */ /* DV header: 1DIF */ buf += dv_write_dif_id(DV_SECT_HEADER, chan+chan_offset, i, 0, buf); buf += dv_write_pack((c->sys->dsf ? DV_HEADER625 : DV_HEADER525), c, buf); buf += 72; /* unused bytes */ /* DV subcode: 2DIFs */ for (j = 0; j < 2; j++) { buf += dv_write_dif_id(DV_SECT_SUBCODE, chan+chan_offset, i, j, buf); for (k = 0; k < 6; k++) buf += dv_write_ssyb_id(k, (i < c->sys->difseg_size / 2), buf) + 5; buf += 29; /* unused bytes */ } /* DV VAUX: 3DIFS */ for (j = 0; j < 3; j++) { buf += dv_write_dif_id(DV_SECT_VAUX, chan+chan_offset, i, j, buf); buf += dv_write_pack(DV_VIDEO_SOURCE, c, buf); buf += dv_write_pack(DV_VIDEO_CONTROL, c, buf); buf += 7 * 5; buf += dv_write_pack(DV_VIDEO_SOURCE, c, buf); buf += dv_write_pack(DV_VIDEO_CONTROL, c, buf); buf += 4 * 5 + 2; /* unused bytes */ } /* DV Audio/Video: 135 Video DIFs + 9 Audio DIFs */ for (j = 0; j < 135; j++) { if (j % 15 == 0) { memset(buf, 0xff, 80); buf += dv_write_dif_id(DV_SECT_AUDIO, chan+chan_offset, i, j/15, buf); buf += 77; /* audio control & shuffled PCM audio */ } buf += dv_write_dif_id(DV_SECT_VIDEO, chan+chan_offset, i, j, buf); buf += 77; /* 1 video macroblock: 1 bytes control * 4 * 14 bytes Y 8x8 data * 10 bytes Cr 8x8 data * 10 bytes Cb 8x8 data */ } } } } static int dvvideo_encode_frame(AVCodecContext *c, AVPacket *pkt, const AVFrame *frame, int *got_packet) { DVEncContext *s = c->priv_data; int ret; if ((ret = ff_get_encode_buffer(c, pkt, s->sys->frame_size, 0)) < 0) return ret; /* Fixme: Only zero the part that is not overwritten later. */ memset(pkt->data, 0, pkt->size); c->pix_fmt = s->sys->pix_fmt; s->frame = frame; s->buf = pkt->data; dv_format_frame(s, pkt->data); c->execute(c, dv_encode_video_segment, s->work_chunks, NULL, dv_work_pool_size(s->sys), sizeof(DVwork_chunk)); emms_c(); *got_packet = 1; return 0; } #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM #define OFFSET(x) offsetof(DVEncContext, x) static const AVOption dv_options[] = { { "quant_deadzone", "Quantizer dead zone", OFFSET(quant_deadzone), AV_OPT_TYPE_INT, { .i64 = 7 }, 0, 1024, VE }, { NULL }, }; static const AVClass dvvideo_encode_class = { .class_name = "dvvideo encoder", .item_name = av_default_item_name, .option = dv_options, .version = LIBAVUTIL_VERSION_INT, }; const FFCodec ff_dvvideo_encoder = { .p.name = "dvvideo", CODEC_LONG_NAME("DV (Digital Video)"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_DVVIDEO, .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_SLICE_THREADS, .priv_data_size = sizeof(DVEncContext), .init = dvvideo_encode_init, FF_CODEC_ENCODE_CB(dvvideo_encode_frame), .p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE }, .p.priv_class = &dvvideo_encode_class, };