芝麻web文件管理V1.00
编辑当前文件:/home/qrafawbu/ffmpeg/libavcodec/dcadsp.c
/* * Copyright (C) 2016 foo86 * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/mem_internal.h" #include "dcadsp.h" #include "dcamath.h" static void decode_hf_c(int32_t **dst, const int32_t *vq_index, const int8_t hf_vq[1024][32], int32_t scale_factors[32][2], ptrdiff_t sb_start, ptrdiff_t sb_end, ptrdiff_t ofs, ptrdiff_t len) { int i, j; for (i = sb_start; i < sb_end; i++) { const int8_t *coeff = hf_vq[vq_index[i]]; int32_t scale = scale_factors[i][0]; for (j = 0; j < len; j++) dst[i][j + ofs] = clip23(coeff[j] * scale + (1 << 3) >> 4); } } static void decode_joint_c(int32_t **dst, int32_t **src, const int32_t *scale_factors, ptrdiff_t sb_start, ptrdiff_t sb_end, ptrdiff_t ofs, ptrdiff_t len) { int i, j; for (i = sb_start; i < sb_end; i++) { int32_t scale = scale_factors[i]; for (j = 0; j < len; j++) dst[i][j + ofs] = clip23(mul17(src[i][j + ofs], scale)); } } static void lfe_fir_float_c(float *pcm_samples, int32_t *lfe_samples, const float *filter_coeff, ptrdiff_t npcmblocks, int dec_select) { // Select decimation factor int factor = 64 << dec_select; int ncoeffs = 8 >> dec_select; int nlfesamples = npcmblocks >> (dec_select + 1); int i, j, k; for (i = 0; i < nlfesamples; i++) { // One decimated sample generates 64 or 128 interpolated ones for (j = 0; j < factor / 2; j++) { float a = 0; float b = 0; for (k = 0; k < ncoeffs; k++) { a += filter_coeff[ j * ncoeffs + k] * lfe_samples[-k]; b += filter_coeff[255 - j * ncoeffs - k] * lfe_samples[-k]; } pcm_samples[ j] = a; pcm_samples[factor / 2 + j] = b; } lfe_samples++; pcm_samples += factor; } } static void lfe_fir0_float_c(float *pcm_samples, int32_t *lfe_samples, const float *filter_coeff, ptrdiff_t npcmblocks) { lfe_fir_float_c(pcm_samples, lfe_samples, filter_coeff, npcmblocks, 0); } static void lfe_fir1_float_c(float *pcm_samples, int32_t *lfe_samples, const float *filter_coeff, ptrdiff_t npcmblocks) { lfe_fir_float_c(pcm_samples, lfe_samples, filter_coeff, npcmblocks, 1); } static void lfe_x96_float_c(float *dst, const float *src, float *hist, ptrdiff_t len) { float prev = *hist; int i; for (i = 0; i < len; i++) { float a = 0.25f * src[i] + 0.75f * prev; float b = 0.75f * src[i] + 0.25f * prev; prev = src[i]; *dst++ = a; *dst++ = b; } *hist = prev; } static void sub_qmf32_float_c(SynthFilterContext *synth, FFTContext *imdct, float *pcm_samples, int32_t **subband_samples_lo, int32_t **subband_samples_hi, float *hist1, int *offset, float *hist2, const float *filter_coeff, ptrdiff_t npcmblocks, float scale) { LOCAL_ALIGNED_32(float, input, [32]); int i, j; for (j = 0; j < npcmblocks; j++) { // Load in one sample from each subband for (i = 0; i < 32; i++) { if ((i - 1) & 2) input[i] = -subband_samples_lo[i][j]; else input[i] = subband_samples_lo[i][j]; } // One subband sample generates 32 interpolated ones synth->synth_filter_float(imdct, hist1, offset, hist2, filter_coeff, pcm_samples, input, scale); pcm_samples += 32; } } static void sub_qmf64_float_c(SynthFilterContext *synth, FFTContext *imdct, float *pcm_samples, int32_t **subband_samples_lo, int32_t **subband_samples_hi, float *hist1, int *offset, float *hist2, const float *filter_coeff, ptrdiff_t npcmblocks, float scale) { LOCAL_ALIGNED_32(float, input, [64]); int i, j; if (!subband_samples_hi) memset(&input[32], 0, sizeof(input[0]) * 32); for (j = 0; j < npcmblocks; j++) { // Load in one sample from each subband if (subband_samples_hi) { // Full 64 subbands, first 32 are residual coded for (i = 0; i < 32; i++) { if ((i - 1) & 2) input[i] = -subband_samples_lo[i][j] - subband_samples_hi[i][j]; else input[i] = subband_samples_lo[i][j] + subband_samples_hi[i][j]; } for (i = 32; i < 64; i++) { if ((i - 1) & 2) input[i] = -subband_samples_hi[i][j]; else input[i] = subband_samples_hi[i][j]; } } else { // Only first 32 subbands for (i = 0; i < 32; i++) { if ((i - 1) & 2) input[i] = -subband_samples_lo[i][j]; else input[i] = subband_samples_lo[i][j]; } } // One subband sample generates 64 interpolated ones synth->synth_filter_float_64(imdct, hist1, offset, hist2, filter_coeff, pcm_samples, input, scale); pcm_samples += 64; } } static void lfe_fir_fixed_c(int32_t *pcm_samples, int32_t *lfe_samples, const int32_t *filter_coeff, ptrdiff_t npcmblocks) { // Select decimation factor int nlfesamples = npcmblocks >> 1; int i, j, k; for (i = 0; i < nlfesamples; i++) { // One decimated sample generates 64 interpolated ones for (j = 0; j < 32; j++) { int64_t a = 0; int64_t b = 0; for (k = 0; k < 8; k++) { a += (int64_t)filter_coeff[ j * 8 + k] * lfe_samples[-k]; b += (int64_t)filter_coeff[255 - j * 8 - k] * lfe_samples[-k]; } pcm_samples[ j] = clip23(norm23(a)); pcm_samples[32 + j] = clip23(norm23(b)); } lfe_samples++; pcm_samples += 64; } } static void lfe_x96_fixed_c(int32_t *dst, const int32_t *src, int32_t *hist, ptrdiff_t len) { int32_t prev = *hist; int i; for (i = 0; i < len; i++) { int64_t a = INT64_C(2097471) * src[i] + INT64_C(6291137) * prev; int64_t b = INT64_C(6291137) * src[i] + INT64_C(2097471) * prev; prev = src[i]; *dst++ = clip23(norm23(a)); *dst++ = clip23(norm23(b)); } *hist = prev; } static void sub_qmf32_fixed_c(SynthFilterContext *synth, DCADCTContext *imdct, int32_t *pcm_samples, int32_t **subband_samples_lo, int32_t **subband_samples_hi, int32_t *hist1, int *offset, int32_t *hist2, const int32_t *filter_coeff, ptrdiff_t npcmblocks) { LOCAL_ALIGNED_32(int32_t, input, [32]); int i, j; for (j = 0; j < npcmblocks; j++) { // Load in one sample from each subband for (i = 0; i < 32; i++) input[i] = subband_samples_lo[i][j]; // One subband sample generates 32 interpolated ones synth->synth_filter_fixed(imdct, hist1, offset, hist2, filter_coeff, pcm_samples, input); pcm_samples += 32; } } static void sub_qmf64_fixed_c(SynthFilterContext *synth, DCADCTContext *imdct, int32_t *pcm_samples, int32_t **subband_samples_lo, int32_t **subband_samples_hi, int32_t *hist1, int *offset, int32_t *hist2, const int32_t *filter_coeff, ptrdiff_t npcmblocks) { LOCAL_ALIGNED_32(int32_t, input, [64]); int i, j; if (!subband_samples_hi) memset(&input[32], 0, sizeof(input[0]) * 32); for (j = 0; j < npcmblocks; j++) { // Load in one sample from each subband if (subband_samples_hi) { // Full 64 subbands, first 32 are residual coded for (i = 0; i < 32; i++) input[i] = subband_samples_lo[i][j] + subband_samples_hi[i][j]; for (i = 32; i < 64; i++) input[i] = subband_samples_hi[i][j]; } else { // Only first 32 subbands for (i = 0; i < 32; i++) input[i] = subband_samples_lo[i][j]; } // One subband sample generates 64 interpolated ones synth->synth_filter_fixed_64(imdct, hist1, offset, hist2, filter_coeff, pcm_samples, input); pcm_samples += 64; } } static void decor_c(int32_t *dst, const int32_t *src, int coeff, ptrdiff_t len) { int i; for (i = 0; i < len; i++) dst[i] += (SUINT)((int)(src[i] * (SUINT)coeff + (1 << 2)) >> 3); } static void dmix_sub_xch_c(int32_t *dst1, int32_t *dst2, const int32_t *src, ptrdiff_t len) { int i; for (i = 0; i < len; i++) { int32_t cs = mul23(src[i], 5931520 /* M_SQRT1_2 * (1 << 23) */); dst1[i] -= cs; dst2[i] -= cs; } } static void dmix_sub_c(int32_t *dst, const int32_t *src, int coeff, ptrdiff_t len) { int i; for (i = 0; i < len; i++) dst[i] -= (unsigned)mul15(src[i], coeff); } static void dmix_add_c(int32_t *dst, const int32_t *src, int coeff, ptrdiff_t len) { int i; for (i = 0; i < len; i++) dst[i] += (unsigned)mul15(src[i], coeff); } static void dmix_scale_c(int32_t *dst, int scale, ptrdiff_t len) { int i; for (i = 0; i < len; i++) dst[i] = mul15(dst[i], scale); } static void dmix_scale_inv_c(int32_t *dst, int scale_inv, ptrdiff_t len) { int i; for (i = 0; i < len; i++) dst[i] = mul16(dst[i], scale_inv); } static void filter0(SUINT32 *dst, const int32_t *src, int32_t coeff, ptrdiff_t len) { int i; for (i = 0; i < len; i++) dst[i] -= mul22(src[i], coeff); } static void filter1(SUINT32 *dst, const int32_t *src, int32_t coeff, ptrdiff_t len) { int i; for (i = 0; i < len; i++) dst[i] -= mul23(src[i], coeff); } static void assemble_freq_bands_c(int32_t *dst, int32_t *src0, int32_t *src1, const int32_t *coeff, ptrdiff_t len) { int i; filter0(src0, src1, coeff[0], len); filter0(src1, src0, coeff[1], len); filter0(src0, src1, coeff[2], len); filter0(src1, src0, coeff[3], len); for (i = 0; i < 8; i++, src0--) { filter1(src0, src1, coeff[i + 4], len); filter1(src1, src0, coeff[i + 12], len); filter1(src0, src1, coeff[i + 4], len); } for (i = 0; i < len; i++) { *dst++ = *src1++; *dst++ = *++src0; } } static void lbr_bank_c(float output[32][4], float **input, const float *coeff, ptrdiff_t ofs, ptrdiff_t len) { float SW0 = coeff[0]; float SW1 = coeff[1]; float SW2 = coeff[2]; float SW3 = coeff[3]; float C1 = coeff[4]; float C2 = coeff[5]; float C3 = coeff[6]; float C4 = coeff[7]; float AL1 = coeff[8]; float AL2 = coeff[9]; int i; // Short window and 8 point forward MDCT for (i = 0; i < len; i++) { float *src = input[i] + ofs; float a = src[-4] * SW0 - src[-1] * SW3; float b = src[-3] * SW1 - src[-2] * SW2; float c = src[ 2] * SW1 + src[ 1] * SW2; float d = src[ 3] * SW0 + src[ 0] * SW3; output[i][0] = C1 * b - C2 * c + C4 * a - C3 * d; output[i][1] = C1 * d - C2 * a - C4 * b - C3 * c; output[i][2] = C3 * b + C2 * d - C4 * c + C1 * a; output[i][3] = C3 * a - C2 * b + C4 * d - C1 * c; } // Aliasing cancellation for high frequencies for (i = 12; i < len - 1; i++) { float a = output[i ][3] * AL1; float b = output[i+1][0] * AL1; output[i ][3] += b - a; output[i+1][0] -= b + a; a = output[i ][2] * AL2; b = output[i+1][1] * AL2; output[i ][2] += b - a; output[i+1][1] -= b + a; } } static void lfe_iir_c(float *output, const float *input, const float iir[5][4], float hist[5][2], ptrdiff_t factor) { float res, tmp; int i, j, k; for (i = 0; i < 64; i++) { res = *input++; for (j = 0; j < factor; j++) { for (k = 0; k < 5; k++) { tmp = hist[k][0] * iir[k][0] + hist[k][1] * iir[k][1] + res; res = hist[k][0] * iir[k][2] + hist[k][1] * iir[k][3] + tmp; hist[k][0] = hist[k][1]; hist[k][1] = tmp; } *output++ = res; res = 0; } } } av_cold void ff_dcadsp_init(DCADSPContext *s) { s->decode_hf = decode_hf_c; s->decode_joint = decode_joint_c; s->lfe_fir_float[0] = lfe_fir0_float_c; s->lfe_fir_float[1] = lfe_fir1_float_c; s->lfe_x96_float = lfe_x96_float_c; s->sub_qmf_float[0] = sub_qmf32_float_c; s->sub_qmf_float[1] = sub_qmf64_float_c; s->lfe_fir_fixed = lfe_fir_fixed_c; s->lfe_x96_fixed = lfe_x96_fixed_c; s->sub_qmf_fixed[0] = sub_qmf32_fixed_c; s->sub_qmf_fixed[1] = sub_qmf64_fixed_c; s->decor = decor_c; s->dmix_sub_xch = dmix_sub_xch_c; s->dmix_sub = dmix_sub_c; s->dmix_add = dmix_add_c; s->dmix_scale = dmix_scale_c; s->dmix_scale_inv = dmix_scale_inv_c; s->assemble_freq_bands = assemble_freq_bands_c; s->lbr_bank = lbr_bank_c; s->lfe_iir = lfe_iir_c; #if ARCH_X86 ff_dcadsp_init_x86(s); #endif }