芝麻web文件管理V1.00
编辑当前文件:/home/qrafawbu/ffmpeg/libavcodec/dcaadpcm.c
/* * DCA ADPCM engine * Copyright (C) 2017 Daniil Cherednik * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "dcaadpcm.h" #include "dcaenc.h" #include "dca_core.h" #include "mathops.h" typedef int32_t premultiplied_coeffs[10]; //assume we have DCA_ADPCM_COEFFS values before x static inline int64_t calc_corr(const int32_t *x, int len, int j, int k) { int n; int64_t s = 0; for (n = 0; n < len; n++) s += MUL64(x[n-j], x[n-k]); return s; } static inline int64_t apply_filter(const int16_t a[DCA_ADPCM_COEFFS], const int64_t corr[15], const int32_t aa[10]) { int64_t err = 0; int64_t tmp = 0; err = corr[0]; tmp += MUL64(a[0], corr[1]); tmp += MUL64(a[1], corr[2]); tmp += MUL64(a[2], corr[3]); tmp += MUL64(a[3], corr[4]); tmp = norm__(tmp, 13); tmp += tmp; err -= tmp; tmp = 0; tmp += MUL64(corr[5], aa[0]); tmp += MUL64(corr[6], aa[1]); tmp += MUL64(corr[7], aa[2]); tmp += MUL64(corr[8], aa[3]); tmp += MUL64(corr[9], aa[4]); tmp += MUL64(corr[10], aa[5]); tmp += MUL64(corr[11], aa[6]); tmp += MUL64(corr[12], aa[7]); tmp += MUL64(corr[13], aa[8]); tmp += MUL64(corr[14], aa[9]); tmp = norm__(tmp, 26); err += tmp; return llabs(err); } static int64_t find_best_filter(const DCAADPCMEncContext *s, const int32_t *in, int len) { const premultiplied_coeffs *precalc_data = s->private_data; int i, j, k = 0; int vq = -1; int64_t err; int64_t min_err = 1ll << 62; int64_t corr[15]; for (i = 0; i <= DCA_ADPCM_COEFFS; i++) for (j = i; j <= DCA_ADPCM_COEFFS; j++) corr[k++] = calc_corr(in+4, len, i, j); for (i = 0; i < DCA_ADPCM_VQCODEBOOK_SZ; i++) { err = apply_filter(ff_dca_adpcm_vb[i], corr, *precalc_data); if (err < min_err) { min_err = err; vq = i; } precalc_data++; } return vq; } static inline int64_t calc_prediction_gain(int pred_vq, const int32_t *in, int32_t *out, int len) { int i; int32_t error; int64_t signal_energy = 0; int64_t error_energy = 0; for (i = 0; i < len; i++) { error = in[DCA_ADPCM_COEFFS + i] - ff_dcaadpcm_predict(pred_vq, in + i); out[i] = error; signal_energy += MUL64(in[DCA_ADPCM_COEFFS + i], in[DCA_ADPCM_COEFFS + i]); error_energy += MUL64(error, error); } if (!error_energy) return -1; return signal_energy / error_energy; } int ff_dcaadpcm_subband_analysis(const DCAADPCMEncContext *s, const int32_t *in, int len, int *diff) { int pred_vq, i; int32_t input_buffer[16 + DCA_ADPCM_COEFFS]; int32_t input_buffer2[16 + DCA_ADPCM_COEFFS]; int32_t max = 0; int shift_bits; uint64_t pg = 0; for (i = 0; i < len + DCA_ADPCM_COEFFS; i++) max |= FFABS(in[i]); // normalize input to simplify apply_filter shift_bits = av_log2(max) - 11; for (i = 0; i < len + DCA_ADPCM_COEFFS; i++) { input_buffer[i] = norm__(in[i], 7); input_buffer2[i] = norm__(in[i], shift_bits); } pred_vq = find_best_filter(s, input_buffer2, len); if (pred_vq < 0) return -1; pg = calc_prediction_gain(pred_vq, input_buffer, diff, len); // Greater than 10db (10*log(10)) prediction gain to use ADPCM. // TODO: Tune it. if (pg < 10) return -1; for (i = 0; i < len; i++) diff[i] <<= 7; return pred_vq; } static void precalc(premultiplied_coeffs *data) { int i, j, k; for (i = 0; i < DCA_ADPCM_VQCODEBOOK_SZ; i++) { int id = 0; int32_t t = 0; for (j = 0; j < DCA_ADPCM_COEFFS; j++) { for (k = j; k < DCA_ADPCM_COEFFS; k++) { t = (int32_t)ff_dca_adpcm_vb[i][j] * (int32_t)ff_dca_adpcm_vb[i][k]; if (j != k) t *= 2; (*data)[id++] = t; } } data++; } } int ff_dcaadpcm_do_real(int pred_vq_index, softfloat quant, int32_t scale_factor, int32_t step_size, const int32_t *prev_hist, const int32_t *in, int32_t *next_hist, int32_t *out, int len, int32_t peak) { int i; int64_t delta; int32_t dequant_delta; int32_t work_bufer[16 + DCA_ADPCM_COEFFS]; memcpy(work_bufer, prev_hist, sizeof(int32_t) * DCA_ADPCM_COEFFS); for (i = 0; i < len; i++) { work_bufer[DCA_ADPCM_COEFFS + i] = ff_dcaadpcm_predict(pred_vq_index, &work_bufer[i]); delta = (int64_t)in[i] - ((int64_t)work_bufer[DCA_ADPCM_COEFFS + i] << 7); out[i] = quantize_value(av_clip64(delta, -peak, peak), quant); ff_dca_core_dequantize(&dequant_delta, &out[i], step_size, scale_factor, 0, 1); work_bufer[DCA_ADPCM_COEFFS+i] += dequant_delta; } memcpy(next_hist, &work_bufer[len], sizeof(int32_t) * DCA_ADPCM_COEFFS); return 0; } av_cold int ff_dcaadpcm_init(DCAADPCMEncContext *s) { if (!s) return -1; s->private_data = av_malloc(sizeof(premultiplied_coeffs) * DCA_ADPCM_VQCODEBOOK_SZ); if (!s->private_data) return AVERROR(ENOMEM); precalc(s->private_data); return 0; } av_cold void ff_dcaadpcm_free(DCAADPCMEncContext *s) { if (!s) return; av_freep(&s->private_data); }