芝麻web文件管理V1.00
编辑当前文件:/home/qrafawbu/ffmpeg/libavcodec/cinepakenc.c
/* * Cinepak encoder (c) 2011 Tomas Härdin * http://titan.codemill.se/~tomhar/cinepakenc.patch * * Fixes and improvements, vintage decoders compatibility * (c) 2013, 2014 Rl, Aetey Global Technologies AB * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /* * TODO: * - optimize: color space conversion (move conversion to libswscale), ... * MAYBE: * - "optimally" split the frame into several non-regular areas * using a separate codebook pair for each area and approximating * the area by several rectangular strips (generally not full width ones) * (use quadtree splitting? a simple fixed-granularity grid?) */ #include
#include "libavutil/avassert.h" #include "libavutil/common.h" #include "libavutil/internal.h" #include "libavutil/intreadwrite.h" #include "libavutil/lfg.h" #include "libavutil/opt.h" #include "avcodec.h" #include "codec_internal.h" #include "elbg.h" #include "encode.h" #define CVID_HEADER_SIZE 10 #define STRIP_HEADER_SIZE 12 #define CHUNK_HEADER_SIZE 4 #define MB_SIZE 4 //4x4 MBs #define MB_AREA (MB_SIZE * MB_SIZE) #define VECTOR_MAX 6 // six or four entries per vector depending on format #define CODEBOOK_MAX 256 // size of a codebook #define MAX_STRIPS 32 // Note: having fewer choices regarding the number of strips speeds up encoding (obviously) #define MIN_STRIPS 1 // Note: having more strips speeds up encoding the frame (this is less obvious) // MAX_STRIPS limits the maximum quality you can reach // when you want high quality on high resolutions, // MIN_STRIPS limits the minimum efficiently encodable bit rate // on low resolutions // the numbers are only used for brute force optimization for the first frame, // for the following frames they are adaptively readjusted // NOTE the decoder in ffmpeg has its own arbitrary limitation on the number // of strips, currently 32 typedef enum CinepakMode { MODE_V1_ONLY = 0, MODE_V1_V4, MODE_MC, MODE_COUNT, } CinepakMode; typedef enum mb_encoding { ENC_V1, ENC_V4, ENC_SKIP, ENC_UNCERTAIN } mb_encoding; typedef struct mb_info { int v1_vector; // index into v1 codebook int v1_error; // error when using V1 encoding int v4_vector[4]; // indices into v4 codebook int v4_error; // error when using V4 encoding int skip_error; // error when block is skipped (aka copied from last frame) mb_encoding best_encoding; // last result from calculate_mode_score() } mb_info; typedef struct strip_info { int v1_codebook[CODEBOOK_MAX * VECTOR_MAX]; int v4_codebook[CODEBOOK_MAX * VECTOR_MAX]; int v1_size; int v4_size; CinepakMode mode; } strip_info; typedef struct CinepakEncContext { const AVClass *class; AVCodecContext *avctx; unsigned char *pict_bufs[4], *strip_buf, *frame_buf; AVFrame *last_frame; AVFrame *best_frame; AVFrame *scratch_frame; AVFrame *input_frame; enum AVPixelFormat pix_fmt; int w, h; int frame_buf_size; int curframe; AVLFG randctx; uint64_t lambda; int *codebook_input; int *codebook_closest; mb_info *mb; // MB RD state int min_strips; // the current limit int max_strips; // the current limit // options int max_extra_cb_iterations; int skip_empty_cb; int min_min_strips; int max_max_strips; int strip_number_delta_range; struct ELBGContext *elbg; } CinepakEncContext; #define OFFSET(x) offsetof(CinepakEncContext, x) #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM static const AVOption options[] = { { "max_extra_cb_iterations", "Max extra codebook recalculation passes, more is better and slower", OFFSET(max_extra_cb_iterations), AV_OPT_TYPE_INT, { .i64 = 2 }, 0, INT_MAX, VE }, { "skip_empty_cb", "Avoid wasting bytes, ignore vintage MacOS decoder", OFFSET(skip_empty_cb), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE }, { "max_strips", "Limit strips/frame, vintage compatible is 1..3, otherwise the more the better", OFFSET(max_max_strips), AV_OPT_TYPE_INT, { .i64 = 3 }, MIN_STRIPS, MAX_STRIPS, VE }, { "min_strips", "Enforce min strips/frame, more is worse and faster, must be <= max_strips", OFFSET(min_min_strips), AV_OPT_TYPE_INT, { .i64 = MIN_STRIPS }, MIN_STRIPS, MAX_STRIPS, VE }, { "strip_number_adaptivity", "How fast the strip number adapts, more is slightly better, much slower", OFFSET(strip_number_delta_range), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, MAX_STRIPS - MIN_STRIPS, VE }, { NULL }, }; static const AVClass cinepak_class = { .class_name = "cinepak", .item_name = av_default_item_name, .option = options, .version = LIBAVUTIL_VERSION_INT, }; static av_cold int cinepak_encode_init(AVCodecContext *avctx) { CinepakEncContext *s = avctx->priv_data; int x, mb_count, strip_buf_size, frame_buf_size; if (avctx->width & 3 || avctx->height & 3) { av_log(avctx, AV_LOG_ERROR, "width and height must be multiples of four (got %ix%i)\n", avctx->width, avctx->height); return AVERROR(EINVAL); } if (s->min_min_strips > s->max_max_strips) { av_log(avctx, AV_LOG_ERROR, "minimum number of strips must not exceed maximum (got %i and %i)\n", s->min_min_strips, s->max_max_strips); return AVERROR(EINVAL); } if (!(s->last_frame = av_frame_alloc())) return AVERROR(ENOMEM); if (!(s->best_frame = av_frame_alloc())) return AVERROR(ENOMEM); if (!(s->scratch_frame = av_frame_alloc())) return AVERROR(ENOMEM); if (avctx->pix_fmt == AV_PIX_FMT_RGB24) if (!(s->input_frame = av_frame_alloc())) return AVERROR(ENOMEM); if (!(s->codebook_input = av_malloc_array((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2, sizeof(*s->codebook_input)))) return AVERROR(ENOMEM); if (!(s->codebook_closest = av_malloc_array((avctx->width * avctx->height) >> 2, sizeof(*s->codebook_closest)))) return AVERROR(ENOMEM); for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++) if (!(s->pict_bufs[x] = av_malloc((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2))) return AVERROR(ENOMEM); mb_count = avctx->width * avctx->height / MB_AREA; // the largest possible chunk is 0x31 with all MBs encoded in V4 mode // and full codebooks being replaced in INTER mode, // which is 34 bits per MB // and 2*256 extra flag bits per strip strip_buf_size = STRIP_HEADER_SIZE + 3 * CHUNK_HEADER_SIZE + 2 * VECTOR_MAX * CODEBOOK_MAX + 4 * (mb_count + (mb_count + 15) / 16) + (2 * CODEBOOK_MAX) / 8; frame_buf_size = CVID_HEADER_SIZE + s->max_max_strips * strip_buf_size; if (!(s->strip_buf = av_malloc(strip_buf_size))) return AVERROR(ENOMEM); if (!(s->frame_buf = av_malloc(frame_buf_size))) return AVERROR(ENOMEM); if (!(s->mb = av_malloc_array(mb_count, sizeof(mb_info)))) return AVERROR(ENOMEM); av_lfg_init(&s->randctx, 1); s->avctx = avctx; s->w = avctx->width; s->h = avctx->height; s->frame_buf_size = frame_buf_size; s->curframe = 0; s->pix_fmt = avctx->pix_fmt; // set up AVFrames s->last_frame->data[0] = s->pict_bufs[0]; s->last_frame->linesize[0] = s->w; s->best_frame->data[0] = s->pict_bufs[1]; s->best_frame->linesize[0] = s->w; s->scratch_frame->data[0] = s->pict_bufs[2]; s->scratch_frame->linesize[0] = s->w; if (s->pix_fmt == AV_PIX_FMT_RGB24) { s->last_frame->data[1] = s->last_frame->data[0] + s->w * s->h; s->last_frame->data[2] = s->last_frame->data[1] + ((s->w * s->h) >> 2); s->last_frame->linesize[1] = s->last_frame->linesize[2] = s->w >> 1; s->best_frame->data[1] = s->best_frame->data[0] + s->w * s->h; s->best_frame->data[2] = s->best_frame->data[1] + ((s->w * s->h) >> 2); s->best_frame->linesize[1] = s->best_frame->linesize[2] = s->w >> 1; s->scratch_frame->data[1] = s->scratch_frame->data[0] + s->w * s->h; s->scratch_frame->data[2] = s->scratch_frame->data[1] + ((s->w * s->h) >> 2); s->scratch_frame->linesize[1] = s->scratch_frame->linesize[2] = s->w >> 1; s->input_frame->data[0] = s->pict_bufs[3]; s->input_frame->linesize[0] = s->w; s->input_frame->data[1] = s->input_frame->data[0] + s->w * s->h; s->input_frame->data[2] = s->input_frame->data[1] + ((s->w * s->h) >> 2); s->input_frame->linesize[1] = s->input_frame->linesize[2] = s->w >> 1; } s->min_strips = s->min_min_strips; s->max_strips = s->max_max_strips; return 0; } static int64_t calculate_mode_score(CinepakEncContext *s, int h, strip_info *info, int report, int *training_set_v1_shrunk, int *training_set_v4_shrunk) { // score = FF_LAMBDA_SCALE * error + lambda * bits int x; int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4; int mb_count = s->w * h / MB_AREA; mb_info *mb; int64_t score1, score2, score3; int64_t ret = s->lambda * ((info->v1_size ? CHUNK_HEADER_SIZE + info->v1_size * entry_size : 0) + (info->v4_size ? CHUNK_HEADER_SIZE + info->v4_size * entry_size : 0) + CHUNK_HEADER_SIZE) << 3; switch (info->mode) { case MODE_V1_ONLY: // one byte per MB ret += s->lambda * 8 * mb_count; // while calculating we assume all blocks are ENC_V1 for (x = 0; x < mb_count; x++) { mb = &s->mb[x]; ret += FF_LAMBDA_SCALE * mb->v1_error; // this function is never called for report in MODE_V1_ONLY // if (!report) mb->best_encoding = ENC_V1; } break; case MODE_V1_V4: // 9 or 33 bits per MB if (report) { // no moves between the corresponding training sets are allowed *training_set_v1_shrunk = *training_set_v4_shrunk = 0; for (x = 0; x < mb_count; x++) { int mberr; mb = &s->mb[x]; if (mb->best_encoding == ENC_V1) score1 = s->lambda * 9 + FF_LAMBDA_SCALE * (mberr = mb->v1_error); else score1 = s->lambda * 33 + FF_LAMBDA_SCALE * (mberr = mb->v4_error); ret += score1; } } else { // find best mode per block for (x = 0; x < mb_count; x++) { mb = &s->mb[x]; score1 = s->lambda * 9 + FF_LAMBDA_SCALE * mb->v1_error; score2 = s->lambda * 33 + FF_LAMBDA_SCALE * mb->v4_error; if (score1 <= score2) { ret += score1; mb->best_encoding = ENC_V1; } else { ret += score2; mb->best_encoding = ENC_V4; } } } break; case MODE_MC: // 1, 10 or 34 bits per MB if (report) { int v1_shrunk = 0, v4_shrunk = 0; for (x = 0; x < mb_count; x++) { mb = &s->mb[x]; // it is OK to move blocks to ENC_SKIP here // but not to any codebook encoding! score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error; if (mb->best_encoding == ENC_SKIP) { ret += score1; } else if (mb->best_encoding == ENC_V1) { if ((score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error) >= score1) { mb->best_encoding = ENC_SKIP; ++v1_shrunk; ret += score1; } else { ret += score2; } } else { if ((score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error) >= score1) { mb->best_encoding = ENC_SKIP; ++v4_shrunk; ret += score1; } else { ret += score3; } } } *training_set_v1_shrunk = v1_shrunk; *training_set_v4_shrunk = v4_shrunk; } else { // find best mode per block for (x = 0; x < mb_count; x++) { mb = &s->mb[x]; score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error; score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error; score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error; if (score1 <= score2 && score1 <= score3) { ret += score1; mb->best_encoding = ENC_SKIP; } else if (score2 <= score3) { ret += score2; mb->best_encoding = ENC_V1; } else { ret += score3; mb->best_encoding = ENC_V4; } } } break; } return ret; } static int write_chunk_header(unsigned char *buf, int chunk_type, int chunk_size) { buf[0] = chunk_type; AV_WB24(&buf[1], chunk_size + CHUNK_HEADER_SIZE); return CHUNK_HEADER_SIZE; } static int encode_codebook(CinepakEncContext *s, int *codebook, int size, int chunk_type_yuv, int chunk_type_gray, unsigned char *buf) { int x, y, ret, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4; int incremental_codebook_replacement_mode = 0; // hardcoded here, // the compiler should notice that this is a constant -- rl ret = write_chunk_header(buf, s->pix_fmt == AV_PIX_FMT_RGB24 ? chunk_type_yuv + (incremental_codebook_replacement_mode ? 1 : 0) : chunk_type_gray + (incremental_codebook_replacement_mode ? 1 : 0), entry_size * size + (incremental_codebook_replacement_mode ? (size + 31) / 32 * 4 : 0)); // we do codebook encoding according to the "intra" mode // but we keep the "dead" code for reference in case we will want // to use incremental codebook updates (which actually would give us // "kind of" motion compensation, especially in 1 strip/frame case) -- rl // (of course, the code will be not useful as-is) if (incremental_codebook_replacement_mode) { int flags = 0; int flagsind; for (x = 0; x < size; x++) { if (flags == 0) { flagsind = ret; ret += 4; flags = 0x80000000; } else flags = ((flags >> 1) | 0x80000000); for (y = 0; y < entry_size; y++) buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0); if ((flags & 0xffffffff) == 0xffffffff) { AV_WB32(&buf[flagsind], flags); flags = 0; } } if (flags) AV_WB32(&buf[flagsind], flags); } else for (x = 0; x < size; x++) for (y = 0; y < entry_size; y++) buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0); return ret; } // sets out to the sub picture starting at (x,y) in in static void get_sub_picture(CinepakEncContext *s, int x, int y, uint8_t *const in_data[4], const int in_linesize[4], uint8_t *out_data[4], int out_linesize[4]) { out_data[0] = in_data[0] + x + y * in_linesize[0]; out_linesize[0] = in_linesize[0]; if (s->pix_fmt == AV_PIX_FMT_RGB24) { out_data[1] = in_data[1] + (x >> 1) + (y >> 1) * in_linesize[1]; out_linesize[1] = in_linesize[1]; out_data[2] = in_data[2] + (x >> 1) + (y >> 1) * in_linesize[2]; out_linesize[2] = in_linesize[2]; } } // decodes the V1 vector in mb into the 4x4 MB pointed to by data static void decode_v1_vector(CinepakEncContext *s, uint8_t *data[4], int linesize[4], int v1_vector, strip_info *info) { int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4; data[0][0] = data[0][1] = data[0][ linesize[0]] = data[0][1 + linesize[0]] = info->v1_codebook[v1_vector * entry_size]; data[0][2] = data[0][3] = data[0][2 + linesize[0]] = data[0][3 + linesize[0]] = info->v1_codebook[v1_vector * entry_size + 1]; data[0][ 2 * linesize[0]] = data[0][1 + 2 * linesize[0]] = data[0][ 3 * linesize[0]] = data[0][1 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 2]; data[0][2 + 2 * linesize[0]] = data[0][3 + 2 * linesize[0]] = data[0][2 + 3 * linesize[0]] = data[0][3 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 3]; if (s->pix_fmt == AV_PIX_FMT_RGB24) { data[1][0] = data[1][1] = data[1][ linesize[1]] = data[1][1 + linesize[1]] = info->v1_codebook[v1_vector * entry_size + 4]; data[2][0] = data[2][1] = data[2][ linesize[2]] = data[2][1 + linesize[2]] = info->v1_codebook[v1_vector * entry_size + 5]; } } // decodes the V4 vectors in mb into the 4x4 MB pointed to by data static void decode_v4_vector(CinepakEncContext *s, uint8_t *data[4], int linesize[4], int *v4_vector, strip_info *info) { int i, x, y, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4; for (i = y = 0; y < 4; y += 2) { for (x = 0; x < 4; x += 2, i++) { data[0][x + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size]; data[0][x + 1 + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 1]; data[0][x + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 2]; data[0][x + 1 + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 3]; if (s->pix_fmt == AV_PIX_FMT_RGB24) { data[1][(x >> 1) + (y >> 1) * linesize[1]] = info->v4_codebook[v4_vector[i] * entry_size + 4]; data[2][(x >> 1) + (y >> 1) * linesize[2]] = info->v4_codebook[v4_vector[i] * entry_size + 5]; } } } } static void copy_mb(CinepakEncContext *s, uint8_t *a_data[4], int a_linesize[4], uint8_t *b_data[4], int b_linesize[4]) { int y, p; for (y = 0; y < MB_SIZE; y++) memcpy(a_data[0] + y * a_linesize[0], b_data[0] + y * b_linesize[0], MB_SIZE); if (s->pix_fmt == AV_PIX_FMT_RGB24) { for (p = 1; p <= 2; p++) for (y = 0; y < MB_SIZE / 2; y++) memcpy(a_data[p] + y * a_linesize[p], b_data[p] + y * b_linesize[p], MB_SIZE / 2); } } static int encode_mode(CinepakEncContext *s, int h, uint8_t *scratch_data[4], int scratch_linesize[4], uint8_t *last_data[4], int last_linesize[4], strip_info *info, unsigned char *buf) { int x, y, z, bits, temp_size, header_ofs, ret = 0, mb_count = s->w * h / MB_AREA; int needs_extra_bit, should_write_temp; uint32_t flags; unsigned char temp[64]; // 32/2 = 16 V4 blocks at 4 B each -> 64 B mb_info *mb; uint8_t *sub_scratch_data[4] = { 0 }, *sub_last_data[4] = { 0 }; int sub_scratch_linesize[4] = { 0 }, sub_last_linesize[4] = { 0 }; // encode codebooks ////// MacOS vintage decoder compatibility dictates the presence of ////// the codebook chunk even when the codebook is empty - pretty dumb... ////// and also the certain order of the codebook chunks -- rl if (info->v4_size || !s->skip_empty_cb) ret += encode_codebook(s, info->v4_codebook, info->v4_size, 0x20, 0x24, buf + ret); if (info->v1_size || !s->skip_empty_cb) ret += encode_codebook(s, info->v1_codebook, info->v1_size, 0x22, 0x26, buf + ret); // update scratch picture for (z = y = 0; y < h; y += MB_SIZE) for (x = 0; x < s->w; x += MB_SIZE, z++) { mb = &s->mb[z]; get_sub_picture(s, x, y, scratch_data, scratch_linesize, sub_scratch_data, sub_scratch_linesize); if (info->mode == MODE_MC && mb->best_encoding == ENC_SKIP) { get_sub_picture(s, x, y, last_data, last_linesize, sub_last_data, sub_last_linesize); copy_mb(s, sub_scratch_data, sub_scratch_linesize, sub_last_data, sub_last_linesize); } else if (info->mode == MODE_V1_ONLY || mb->best_encoding == ENC_V1) decode_v1_vector(s, sub_scratch_data, sub_scratch_linesize, mb->v1_vector, info); else decode_v4_vector(s, sub_scratch_data, sub_scratch_linesize, mb->v4_vector, info); } switch (info->mode) { case MODE_V1_ONLY: ret += write_chunk_header(buf + ret, 0x32, mb_count); for (x = 0; x < mb_count; x++) buf[ret++] = s->mb[x].v1_vector; break; case MODE_V1_V4: // remember header position header_ofs = ret; ret += CHUNK_HEADER_SIZE; for (x = 0; x < mb_count; x += 32) { flags = 0; for (y = x; y < FFMIN(x + 32, mb_count); y++) if (s->mb[y].best_encoding == ENC_V4) flags |= 1U << (31 - y + x); AV_WB32(&buf[ret], flags); ret += 4; for (y = x; y < FFMIN(x + 32, mb_count); y++) { mb = &s->mb[y]; if (mb->best_encoding == ENC_V1) buf[ret++] = mb->v1_vector; else for (z = 0; z < 4; z++) buf[ret++] = mb->v4_vector[z]; } } write_chunk_header(buf + header_ofs, 0x30, ret - header_ofs - CHUNK_HEADER_SIZE); break; case MODE_MC: // remember header position header_ofs = ret; ret += CHUNK_HEADER_SIZE; flags = bits = temp_size = 0; for (x = 0; x < mb_count; x++) { mb = &s->mb[x]; flags |= (uint32_t)(mb->best_encoding != ENC_SKIP) << (31 - bits++); needs_extra_bit = 0; should_write_temp = 0; if (mb->best_encoding != ENC_SKIP) { if (bits < 32) flags |= (uint32_t)(mb->best_encoding == ENC_V4) << (31 - bits++); else needs_extra_bit = 1; } if (bits == 32) { AV_WB32(&buf[ret], flags); ret += 4; flags = bits = 0; if (mb->best_encoding == ENC_SKIP || needs_extra_bit) { memcpy(&buf[ret], temp, temp_size); ret += temp_size; temp_size = 0; } else should_write_temp = 1; } if (needs_extra_bit) { flags = (uint32_t)(mb->best_encoding == ENC_V4) << 31; bits = 1; } if (mb->best_encoding == ENC_V1) temp[temp_size++] = mb->v1_vector; else if (mb->best_encoding == ENC_V4) for (z = 0; z < 4; z++) temp[temp_size++] = mb->v4_vector[z]; if (should_write_temp) { memcpy(&buf[ret], temp, temp_size); ret += temp_size; temp_size = 0; } } if (bits > 0) { AV_WB32(&buf[ret], flags); ret += 4; memcpy(&buf[ret], temp, temp_size); ret += temp_size; } write_chunk_header(buf + header_ofs, 0x31, ret - header_ofs - CHUNK_HEADER_SIZE); break; } return ret; } // computes distortion of 4x4 MB in b compared to a static int compute_mb_distortion(CinepakEncContext *s, uint8_t *a_data[4], int a_linesize[4], uint8_t *b_data[4], int b_linesize[4]) { int x, y, p, d, ret = 0; for (y = 0; y < MB_SIZE; y++) for (x = 0; x < MB_SIZE; x++) { d = a_data[0][x + y * a_linesize[0]] - b_data[0][x + y * b_linesize[0]]; ret += d * d; } if (s->pix_fmt == AV_PIX_FMT_RGB24) { for (p = 1; p <= 2; p++) { for (y = 0; y < MB_SIZE / 2; y++) for (x = 0; x < MB_SIZE / 2; x++) { d = a_data[p][x + y * a_linesize[p]] - b_data[p][x + y * b_linesize[p]]; ret += d * d; } } } return ret; } // return the possibly adjusted size of the codebook #define CERTAIN(x) ((x) != ENC_UNCERTAIN) static int quantize(CinepakEncContext *s, int h, uint8_t *data[4], int linesize[4], int v1mode, strip_info *info, mb_encoding encoding) { int x, y, i, j, k, x2, y2, x3, y3, plane, shift, mbn; int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4; int *codebook = v1mode ? info->v1_codebook : info->v4_codebook; int size = v1mode ? info->v1_size : info->v4_size; uint8_t vq_pict_buf[(MB_AREA * 3) / 2]; uint8_t *sub_data[4], *vq_data[4]; int sub_linesize[4], vq_linesize[4]; int ret; for (mbn = i = y = 0; y < h; y += MB_SIZE) { for (x = 0; x < s->w; x += MB_SIZE, ++mbn) { int *base; if (CERTAIN(encoding)) { // use for the training only the blocks known to be to be encoded [sic:-] if (s->mb[mbn].best_encoding != encoding) continue; } base = s->codebook_input + i * entry_size; if (v1mode) { // subsample for (j = y2 = 0; y2 < entry_size; y2 += 2) for (x2 = 0; x2 < 4; x2 += 2, j++) { plane = y2 < 4 ? 0 : 1 + (x2 >> 1); shift = y2 < 4 ? 0 : 1; x3 = shift ? 0 : x2; y3 = shift ? 0 : y2; base[j] = (data[plane][((x + x3) >> shift) + ((y + y3) >> shift) * linesize[plane]] + data[plane][((x + x3) >> shift) + 1 + ((y + y3) >> shift) * linesize[plane]] + data[plane][((x + x3) >> shift) + (((y + y3) >> shift) + 1) * linesize[plane]] + data[plane][((x + x3) >> shift) + 1 + (((y + y3) >> shift) + 1) * linesize[plane]]) >> 2; } } else { // copy for (j = y2 = 0; y2 < MB_SIZE; y2 += 2) { for (x2 = 0; x2 < MB_SIZE; x2 += 2) for (k = 0; k < entry_size; k++, j++) { plane = k >= 4 ? k - 3 : 0; if (k >= 4) { x3 = (x + x2) >> 1; y3 = (y + y2) >> 1; } else { x3 = x + x2 + (k & 1); y3 = y + y2 + (k >> 1); } base[j] = data[plane][x3 + y3 * linesize[plane]]; } } } i += v1mode ? 1 : 4; } } if (i == 0) // empty training set, nothing to do return 0; if (i < size) size = i; ret = avpriv_elbg_do(&s->elbg, s->codebook_input, entry_size, i, codebook, size, 1, s->codebook_closest, &s->randctx, 0); if (ret < 0) return ret; // set up vq_data, which contains a single MB vq_data[0] = vq_pict_buf; vq_linesize[0] = MB_SIZE; vq_data[1] = &vq_pict_buf[MB_AREA]; vq_data[2] = vq_data[1] + (MB_AREA >> 2); vq_linesize[1] = vq_linesize[2] = MB_SIZE >> 1; // copy indices for (i = j = y = 0; y < h; y += MB_SIZE) for (x = 0; x < s->w; x += MB_SIZE, j++) { mb_info *mb = &s->mb[j]; // skip uninteresting blocks if we know their preferred encoding if (CERTAIN(encoding) && mb->best_encoding != encoding) continue; // point sub_data to current MB get_sub_picture(s, x, y, data, linesize, sub_data, sub_linesize); if (v1mode) { mb->v1_vector = s->codebook_closest[i]; // fill in vq_data with V1 data decode_v1_vector(s, vq_data, vq_linesize, mb->v1_vector, info); mb->v1_error = compute_mb_distortion(s, sub_data, sub_linesize, vq_data, vq_linesize); } else { for (k = 0; k < 4; k++) mb->v4_vector[k] = s->codebook_closest[i + k]; // fill in vq_data with V4 data decode_v4_vector(s, vq_data, vq_linesize, mb->v4_vector, info); mb->v4_error = compute_mb_distortion(s, sub_data, sub_linesize, vq_data, vq_linesize); } i += v1mode ? 1 : 4; } // check that we did it right in the beginning of the function av_assert0(i >= size); // training set is no smaller than the codebook return size; } static void calculate_skip_errors(CinepakEncContext *s, int h, uint8_t *last_data[4], int last_linesize[4], uint8_t *data[4], int linesize[4], strip_info *info) { int x, y, i; uint8_t *sub_last_data [4], *sub_pict_data [4]; int sub_last_linesize[4], sub_pict_linesize[4]; for (i = y = 0; y < h; y += MB_SIZE) for (x = 0; x < s->w; x += MB_SIZE, i++) { get_sub_picture(s, x, y, last_data, last_linesize, sub_last_data, sub_last_linesize); get_sub_picture(s, x, y, data, linesize, sub_pict_data, sub_pict_linesize); s->mb[i].skip_error = compute_mb_distortion(s, sub_last_data, sub_last_linesize, sub_pict_data, sub_pict_linesize); } } static void write_strip_keyframe(unsigned char *buf, int keyframe) { // actually we are exclusively using intra strip coding (how much can we win // otherwise? how to choose which part of a codebook to update?), // keyframes are different only because we disallow ENC_SKIP on them -- rl // (besides, the logic here used to be inverted: ) // buf[0] = keyframe ? 0x11: 0x10; buf[0] = keyframe ? 0x10 : 0x11; } static void write_strip_header(CinepakEncContext *s, int y, int h, int keyframe, unsigned char *buf, int strip_size) { write_strip_keyframe(buf, keyframe); AV_WB24(&buf[1], strip_size + STRIP_HEADER_SIZE); // AV_WB16(&buf[4], y); /* using absolute y values works -- rl */ AV_WB16(&buf[4], 0); /* using relative values works as well -- rl */ AV_WB16(&buf[6], 0); // AV_WB16(&buf[8], y + h); /* using absolute y values works -- rl */ AV_WB16(&buf[8], h); /* using relative values works as well -- rl */ AV_WB16(&buf[10], s->w); } static int rd_strip(CinepakEncContext *s, int y, int h, int keyframe, uint8_t *last_data[4], int last_linesize[4], uint8_t *data[4], int linesize[4], uint8_t *scratch_data[4], int scratch_linesize[4], unsigned char *buf, int64_t *best_score, int *no_skip) { int64_t score = 0; int best_size = 0; strip_info info; // for codebook optimization: int v1enough, v1_size, v4enough, v4_size; int new_v1_size, new_v4_size; int v1shrunk, v4shrunk; if (!keyframe) calculate_skip_errors(s, h, last_data, last_linesize, data, linesize, &info); // try some powers of 4 for the size of the codebooks // constraint the v4 codebook to be no bigger than v1 one, // (and no less than v1_size/4) // thus making v1 preferable and possibly losing small details? should be ok #define SMALLEST_CODEBOOK 1 for (v1enough = 0, v1_size = SMALLEST_CODEBOOK; v1_size <= CODEBOOK_MAX && !v1enough; v1_size <<= 2) { for (v4enough = 0, v4_size = 0; v4_size <= v1_size && !v4enough; v4_size = v4_size ? v4_size << 2 : v1_size >= SMALLEST_CODEBOOK << 2 ? v1_size >> 2 : SMALLEST_CODEBOOK) { CinepakMode mode; // try all modes for (mode = 0; mode < MODE_COUNT; mode++) { // don't allow MODE_MC in intra frames if (keyframe && mode == MODE_MC) continue; if (mode == MODE_V1_ONLY) { info.v1_size = v1_size; // the size may shrink even before optimizations if the input is short: if ((new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_UNCERTAIN)) < 0) return new_v1_size; info.v1_size = new_v1_size; if (info.v1_size < v1_size) // too few eligible blocks, no sense in trying bigger sizes v1enough = 1; info.v4_size = 0; } else { // mode != MODE_V1_ONLY // if v4 codebook is empty then only allow V1-only mode if (!v4_size) continue; if (mode == MODE_V1_V4) { info.v4_size = v4_size; new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_UNCERTAIN); if (new_v4_size < 0) return new_v4_size; info.v4_size = new_v4_size; if (info.v4_size < v4_size) // too few eligible blocks, no sense in trying bigger sizes v4enough = 1; } } info.mode = mode; // choose the best encoding per block, based on current experience score = calculate_mode_score(s, h, &info, 0, &v1shrunk, &v4shrunk); if (mode != MODE_V1_ONLY) { int extra_iterations_limit = s->max_extra_cb_iterations; // recompute the codebooks, omitting the extra blocks // we assume we _may_ come here with more blocks to encode than before info.v1_size = v1_size; new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1); if (new_v1_size < 0) return new_v1_size; if (new_v1_size < info.v1_size) info.v1_size = new_v1_size; // we assume we _may_ come here with more blocks to encode than before info.v4_size = v4_size; new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4); if (new_v4_size < 0) return new_v4_size; if (new_v4_size < info.v4_size) info.v4_size = new_v4_size; // calculate the resulting score // (do not move blocks to codebook encodings now, as some blocks may have // got bigger errors despite a smaller training set - but we do not // ever grow the training sets back) for (;;) { score = calculate_mode_score(s, h, &info, 1, &v1shrunk, &v4shrunk); // do we have a reason to reiterate? if so, have we reached the limit? if ((!v1shrunk && !v4shrunk) || !extra_iterations_limit--) break; // recompute the codebooks, omitting the extra blocks if (v1shrunk) { info.v1_size = v1_size; new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1); if (new_v1_size < 0) return new_v1_size; if (new_v1_size < info.v1_size) info.v1_size = new_v1_size; } if (v4shrunk) { info.v4_size = v4_size; new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4); if (new_v4_size < 0) return new_v4_size; if (new_v4_size < info.v4_size) info.v4_size = new_v4_size; } } } if (best_size == 0 || score < *best_score) { *best_score = score; best_size = encode_mode(s, h, scratch_data, scratch_linesize, last_data, last_linesize, &info, s->strip_buf + STRIP_HEADER_SIZE); // in theory we could have MODE_MC without ENC_SKIP, // but MODE_V1_V4 will always be more efficient *no_skip = info.mode != MODE_MC; write_strip_header(s, y, h, keyframe, s->strip_buf, best_size); } } } } best_size += STRIP_HEADER_SIZE; memcpy(buf, s->strip_buf, best_size); return best_size; } static int write_cvid_header(CinepakEncContext *s, unsigned char *buf, int num_strips, int data_size, int isakeyframe) { buf[0] = isakeyframe ? 0 : 1; AV_WB24(&buf[1], data_size + CVID_HEADER_SIZE); AV_WB16(&buf[4], s->w); AV_WB16(&buf[6], s->h); AV_WB16(&buf[8], num_strips); return CVID_HEADER_SIZE; } static int rd_frame(CinepakEncContext *s, const AVFrame *frame, int isakeyframe, unsigned char *buf, int buf_size, int *got_keyframe) { int num_strips, strip, i, y, nexty, size, temp_size, best_size; uint8_t *last_data [4], *data [4], *scratch_data [4]; int last_linesize[4], linesize[4], scratch_linesize[4]; int64_t best_score = 0, score, score_temp; int best_nstrips, best_strip_offsets[MAX_STRIPS]; if (s->pix_fmt == AV_PIX_FMT_RGB24) { int x; // build a copy of the given frame in the correct colorspace for (y = 0; y < s->h; y += 2) for (x = 0; x < s->w; x += 2) { const uint8_t *ir[2]; int32_t r, g, b, rr, gg, bb; ir[0] = frame->data[0] + x * 3 + y * frame->linesize[0]; ir[1] = ir[0] + frame->linesize[0]; get_sub_picture(s, x, y, s->input_frame->data, s->input_frame->linesize, scratch_data, scratch_linesize); r = g = b = 0; for (i = 0; i < 4; ++i) { int i1, i2; i1 = (i & 1); i2 = (i >= 2); rr = ir[i2][i1 * 3 + 0]; gg = ir[i2][i1 * 3 + 1]; bb = ir[i2][i1 * 3 + 2]; r += rr; g += gg; b += bb; // using fixed point arithmetic for portable repeatability, scaling by 2^23 // "Y" // rr = 0.2857 * rr + 0.5714 * gg + 0.1429 * bb; rr = (2396625 * rr + 4793251 * gg + 1198732 * bb) >> 23; if (rr < 0) rr = 0; else if (rr > 255) rr = 255; scratch_data[0][i1 + i2 * scratch_linesize[0]] = rr; } // let us scale down as late as possible // r /= 4; g /= 4; b /= 4; // "U" // rr = -0.1429 * r - 0.2857 * g + 0.4286 * b; rr = (-299683 * r - 599156 * g + 898839 * b) >> 23; if (rr < -128) rr = -128; else if (rr > 127) rr = 127; scratch_data[1][0] = rr + 128; // quantize needs unsigned // "V" // rr = 0.3571 * r - 0.2857 * g - 0.0714 * b; rr = (748893 * r - 599156 * g - 149737 * b) >> 23; if (rr < -128) rr = -128; else if (rr > 127) rr = 127; scratch_data[2][0] = rr + 128; // quantize needs unsigned } } // would be nice but quite certainly incompatible with vintage players: // support encoding zero strips (meaning skip the whole frame) for (num_strips = s->min_strips; num_strips <= s->max_strips && num_strips <= s->h / MB_SIZE; num_strips++) { int strip_offsets[MAX_STRIPS]; int all_no_skip = 1; score = 0; size = 0; for (y = 0, strip = 1; y < s->h; strip++, y = nexty) { int strip_height, no_skip; strip_offsets[strip-1] = size + CVID_HEADER_SIZE; nexty = strip * s->h / num_strips; // <= s->h // make nexty the next multiple of 4 if not already there if (nexty & 3) nexty += 4 - (nexty & 3); strip_height = nexty - y; if (strip_height <= 0) { // can this ever happen? av_log(s->avctx, AV_LOG_INFO, "skipping zero height strip %i of %i\n", strip, num_strips); continue; } if (s->pix_fmt == AV_PIX_FMT_RGB24) get_sub_picture(s, 0, y, s->input_frame->data, s->input_frame->linesize, data, linesize); else get_sub_picture(s, 0, y, frame->data, frame->linesize, data, linesize); get_sub_picture(s, 0, y, s->last_frame->data, s->last_frame->linesize, last_data, last_linesize); get_sub_picture(s, 0, y, s->scratch_frame->data, s->scratch_frame->linesize, scratch_data, scratch_linesize); if ((temp_size = rd_strip(s, y, strip_height, isakeyframe, last_data, last_linesize, data, linesize, scratch_data, scratch_linesize, s->frame_buf + strip_offsets[strip-1], &score_temp, &no_skip)) < 0) return temp_size; score += score_temp; size += temp_size; all_no_skip &= no_skip; } if (best_score == 0 || score < best_score) { best_score = score; best_size = size + write_cvid_header(s, s->frame_buf, num_strips, size, all_no_skip); FFSWAP(AVFrame *, s->best_frame, s->scratch_frame); memcpy(buf, s->frame_buf, best_size); best_nstrips = num_strips; *got_keyframe = all_no_skip; // no skip MBs in any strip -> keyframe memcpy(best_strip_offsets, strip_offsets, sizeof(strip_offsets)); } // avoid trying too many strip numbers without a real reason // (this makes the processing of the very first frame faster) if (num_strips - best_nstrips > 4) break; } // update strip headers for (i = 0; i < best_nstrips; i++) { write_strip_keyframe(s->frame_buf + best_strip_offsets[i], *got_keyframe); } // let the number of strips slowly adapt to the changes in the contents, // compared to full bruteforcing every time this will occasionally lead // to some r/d performance loss but makes encoding up to several times faster if (!s->strip_number_delta_range) { if (best_nstrips == s->max_strips) { // let us try to step up s->max_strips = best_nstrips + 1; if (s->max_strips >= s->max_max_strips) s->max_strips = s->max_max_strips; } else { // try to step down s->max_strips = best_nstrips; } s->min_strips = s->max_strips - 1; if (s->min_strips < s->min_min_strips) s->min_strips = s->min_min_strips; } else { s->max_strips = best_nstrips + s->strip_number_delta_range; if (s->max_strips >= s->max_max_strips) s->max_strips = s->max_max_strips; s->min_strips = best_nstrips - s->strip_number_delta_range; if (s->min_strips < s->min_min_strips) s->min_strips = s->min_min_strips; } return best_size; } static int cinepak_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet) { CinepakEncContext *s = avctx->priv_data; int ret, got_keyframe; s->lambda = frame->quality ? frame->quality - 1 : 2 * FF_LAMBDA_SCALE; if ((ret = ff_alloc_packet(avctx, pkt, s->frame_buf_size)) < 0) return ret; ret = rd_frame(s, frame, (s->curframe == 0), pkt->data, s->frame_buf_size, &got_keyframe); pkt->size = ret; if (got_keyframe) { pkt->flags |= AV_PKT_FLAG_KEY; s->curframe = 0; } *got_packet = 1; FFSWAP(AVFrame *, s->last_frame, s->best_frame); if (++s->curframe >= avctx->gop_size) s->curframe = 0; return 0; } static av_cold int cinepak_encode_end(AVCodecContext *avctx) { CinepakEncContext *s = avctx->priv_data; int x; avpriv_elbg_free(&s->elbg); av_frame_free(&s->last_frame); av_frame_free(&s->best_frame); av_frame_free(&s->scratch_frame); if (avctx->pix_fmt == AV_PIX_FMT_RGB24) av_frame_free(&s->input_frame); av_freep(&s->codebook_input); av_freep(&s->codebook_closest); av_freep(&s->strip_buf); av_freep(&s->frame_buf); av_freep(&s->mb); for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++) av_freep(&s->pict_bufs[x]); return 0; } const FFCodec ff_cinepak_encoder = { .p.name = "cinepak", CODEC_LONG_NAME("Cinepak"), .p.type = AVMEDIA_TYPE_VIDEO, .p.id = AV_CODEC_ID_CINEPAK, .p.capabilities = AV_CODEC_CAP_DR1, .priv_data_size = sizeof(CinepakEncContext), .init = cinepak_encode_init, FF_CODEC_ENCODE_CB(cinepak_encode_frame), .close = cinepak_encode_end, .p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB24, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE }, .p.priv_class = &cinepak_class, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, };