芝麻web文件管理V1.00
编辑当前文件:/home/qrafawbu/ffmpeg/libavcodec/binkaudio.c
/* * Bink Audio decoder * Copyright (c) 2007-2011 Peter Ross (pross@xvid.org) * Copyright (c) 2009 Daniel Verkamp (daniel@drv.nu) * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Bink Audio decoder * * Technical details here: * http://wiki.multimedia.cx/index.php?title=Bink_Audio */ #include "config_components.h" #include "libavutil/channel_layout.h" #include "libavutil/intfloat.h" #include "libavutil/mem_internal.h" #define BITSTREAM_READER_LE #include "avcodec.h" #include "dct.h" #include "decode.h" #include "get_bits.h" #include "codec_internal.h" #include "internal.h" #include "rdft.h" #include "wma_freqs.h" #define MAX_DCT_CHANNELS 6 #define MAX_CHANNELS 2 #define BINK_BLOCK_MAX_SIZE (MAX_CHANNELS << 11) typedef struct BinkAudioContext { GetBitContext gb; int version_b; ///< Bink version 'b' int first; int channels; int ch_offset; int frame_len; ///< transform size (samples) int overlap_len; ///< overlap size (samples) int block_size; int num_bands; float root; unsigned int bands[26]; float previous[MAX_DCT_CHANNELS][BINK_BLOCK_MAX_SIZE / 16]; ///< coeffs from previous audio block float quant_table[96]; AVPacket *pkt; union { RDFTContext rdft; DCTContext dct; } trans; } BinkAudioContext; static av_cold int decode_init(AVCodecContext *avctx) { BinkAudioContext *s = avctx->priv_data; int sample_rate = avctx->sample_rate; int sample_rate_half; int i, ret; int frame_len_bits; int max_channels = avctx->codec->id == AV_CODEC_ID_BINKAUDIO_RDFT ? MAX_CHANNELS : MAX_DCT_CHANNELS; int channels = avctx->ch_layout.nb_channels; /* determine frame length */ if (avctx->sample_rate < 22050) { frame_len_bits = 9; } else if (avctx->sample_rate < 44100) { frame_len_bits = 10; } else { frame_len_bits = 11; } if (channels < 1 || channels > max_channels) { av_log(avctx, AV_LOG_ERROR, "invalid number of channels: %d\n", channels); return AVERROR_INVALIDDATA; } av_channel_layout_uninit(&avctx->ch_layout); av_channel_layout_default(&avctx->ch_layout, channels); s->version_b = avctx->extradata_size >= 4 && avctx->extradata[3] == 'b'; if (avctx->codec->id == AV_CODEC_ID_BINKAUDIO_RDFT) { // audio is already interleaved for the RDFT format variant avctx->sample_fmt = AV_SAMPLE_FMT_FLT; if (sample_rate > INT_MAX / channels) return AVERROR_INVALIDDATA; sample_rate *= channels; s->channels = 1; if (!s->version_b) frame_len_bits += av_log2(channels); } else { s->channels = channels; avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; } s->frame_len = 1 << frame_len_bits; s->overlap_len = s->frame_len / 16; s->block_size = (s->frame_len - s->overlap_len) * FFMIN(MAX_CHANNELS, s->channels); sample_rate_half = (sample_rate + 1LL) / 2; if (avctx->codec->id == AV_CODEC_ID_BINKAUDIO_RDFT) s->root = 2.0 / (sqrt(s->frame_len) * 32768.0); else s->root = s->frame_len / (sqrt(s->frame_len) * 32768.0); for (i = 0; i < 96; i++) { /* constant is result of 0.066399999/log10(M_E) */ s->quant_table[i] = expf(i * 0.15289164787221953823f) * s->root; } /* calculate number of bands */ for (s->num_bands = 1; s->num_bands < 25; s->num_bands++) if (sample_rate_half <= ff_wma_critical_freqs[s->num_bands - 1]) break; /* populate bands data */ s->bands[0] = 2; for (i = 1; i < s->num_bands; i++) s->bands[i] = (ff_wma_critical_freqs[i - 1] * s->frame_len / sample_rate_half) & ~1; s->bands[s->num_bands] = s->frame_len; s->first = 1; if (CONFIG_BINKAUDIO_RDFT_DECODER && avctx->codec->id == AV_CODEC_ID_BINKAUDIO_RDFT) ret = ff_rdft_init(&s->trans.rdft, frame_len_bits, DFT_C2R); else if (CONFIG_BINKAUDIO_DCT_DECODER) ret = ff_dct_init(&s->trans.dct, frame_len_bits, DCT_III); else av_assert0(0); if (ret < 0) return ret; s->pkt = avctx->internal->in_pkt; return 0; } static float get_float(GetBitContext *gb) { int power = get_bits(gb, 5); float f = ldexpf(get_bits(gb, 23), power - 23); if (get_bits1(gb)) f = -f; return f; } static const uint8_t rle_length_tab[16] = { 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, 64 }; /** * Decode Bink Audio block * @param[out] out Output buffer (must contain s->block_size elements) * @return 0 on success, negative error code on failure */ static int decode_block(BinkAudioContext *s, float **out, int use_dct, int channels, int ch_offset) { int ch, i, j, k; float q, quant[25]; int width, coeff; GetBitContext *gb = &s->gb; if (use_dct) skip_bits(gb, 2); for (ch = 0; ch < channels; ch++) { FFTSample *coeffs = out[ch + ch_offset]; if (s->version_b) { if (get_bits_left(gb) < 64) return AVERROR_INVALIDDATA; coeffs[0] = av_int2float(get_bits_long(gb, 32)) * s->root; coeffs[1] = av_int2float(get_bits_long(gb, 32)) * s->root; } else { if (get_bits_left(gb) < 58) return AVERROR_INVALIDDATA; coeffs[0] = get_float(gb) * s->root; coeffs[1] = get_float(gb) * s->root; } if (get_bits_left(gb) < s->num_bands * 8) return AVERROR_INVALIDDATA; for (i = 0; i < s->num_bands; i++) { int value = get_bits(gb, 8); quant[i] = s->quant_table[FFMIN(value, 95)]; } k = 0; q = quant[0]; // parse coefficients i = 2; while (i < s->frame_len) { if (s->version_b) { j = i + 16; } else { int v = get_bits1(gb); if (v) { v = get_bits(gb, 4); j = i + rle_length_tab[v] * 8; } else { j = i + 8; } } j = FFMIN(j, s->frame_len); width = get_bits(gb, 4); if (width == 0) { memset(coeffs + i, 0, (j - i) * sizeof(*coeffs)); i = j; while (s->bands[k] < i) q = quant[k++]; } else { while (i < j) { if (s->bands[k] == i) q = quant[k++]; coeff = get_bits(gb, width); if (coeff) { int v; v = get_bits1(gb); if (v) coeffs[i] = -q * coeff; else coeffs[i] = q * coeff; } else { coeffs[i] = 0.0f; } i++; } } } if (CONFIG_BINKAUDIO_DCT_DECODER && use_dct) { coeffs[0] /= 0.5; s->trans.dct.dct_calc(&s->trans.dct, coeffs); } else if (CONFIG_BINKAUDIO_RDFT_DECODER) s->trans.rdft.rdft_calc(&s->trans.rdft, coeffs); } for (ch = 0; ch < channels; ch++) { int j; int count = s->overlap_len * channels; if (!s->first) { j = ch; for (i = 0; i < s->overlap_len; i++, j += channels) out[ch + ch_offset][i] = (s->previous[ch + ch_offset][i] * (count - j) + out[ch + ch_offset][i] * j) / count; } memcpy(s->previous[ch + ch_offset], &out[ch + ch_offset][s->frame_len - s->overlap_len], s->overlap_len * sizeof(*s->previous[ch + ch_offset])); } s->first = 0; return 0; } static av_cold int decode_end(AVCodecContext *avctx) { BinkAudioContext * s = avctx->priv_data; if (CONFIG_BINKAUDIO_RDFT_DECODER && avctx->codec->id == AV_CODEC_ID_BINKAUDIO_RDFT) ff_rdft_end(&s->trans.rdft); else if (CONFIG_BINKAUDIO_DCT_DECODER) ff_dct_end(&s->trans.dct); return 0; } static void get_bits_align32(GetBitContext *s) { int n = (-get_bits_count(s)) & 31; if (n) skip_bits(s, n); } static int binkaudio_receive_frame(AVCodecContext *avctx, AVFrame *frame) { BinkAudioContext *s = avctx->priv_data; GetBitContext *gb = &s->gb; int ret; again: if (!s->pkt->data) { ret = ff_decode_get_packet(avctx, s->pkt); if (ret < 0) { s->ch_offset = 0; return ret; } if (s->pkt->size < 4) { av_log(avctx, AV_LOG_ERROR, "Packet is too small\n"); ret = AVERROR_INVALIDDATA; goto fail; } ret = init_get_bits8(gb, s->pkt->data, s->pkt->size); if (ret < 0) goto fail; /* skip reported size */ skip_bits_long(gb, 32); } /* get output buffer */ if (s->ch_offset == 0) { frame->nb_samples = s->frame_len; if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) return ret; } if (decode_block(s, (float **)frame->extended_data, avctx->codec->id == AV_CODEC_ID_BINKAUDIO_DCT, FFMIN(MAX_CHANNELS, s->channels - s->ch_offset), s->ch_offset)) { av_log(avctx, AV_LOG_ERROR, "Incomplete packet\n"); s->ch_offset = 0; return AVERROR_INVALIDDATA; } s->ch_offset += MAX_CHANNELS; get_bits_align32(gb); if (!get_bits_left(gb)) { memset(gb, 0, sizeof(*gb)); av_packet_unref(s->pkt); } if (s->ch_offset >= s->channels) { s->ch_offset = 0; } else { goto again; } frame->nb_samples = s->block_size / FFMIN(avctx->ch_layout.nb_channels, MAX_CHANNELS); return 0; fail: s->ch_offset = 0; av_packet_unref(s->pkt); return ret; } static void decode_flush(AVCodecContext *avctx) { BinkAudioContext *const s = avctx->priv_data; /* s->pkt coincides with avctx->internal->in_pkt * and is unreferenced generically when flushing. */ s->first = 1; s->ch_offset = 0; } const FFCodec ff_binkaudio_rdft_decoder = { .p.name = "binkaudio_rdft", CODEC_LONG_NAME("Bink Audio (RDFT)"), .p.type = AVMEDIA_TYPE_AUDIO, .p.id = AV_CODEC_ID_BINKAUDIO_RDFT, .priv_data_size = sizeof(BinkAudioContext), .init = decode_init, .flush = decode_flush, .close = decode_end, FF_CODEC_RECEIVE_FRAME_CB(binkaudio_receive_frame), .p.capabilities = AV_CODEC_CAP_DR1, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, }; const FFCodec ff_binkaudio_dct_decoder = { .p.name = "binkaudio_dct", CODEC_LONG_NAME("Bink Audio (DCT)"), .p.type = AVMEDIA_TYPE_AUDIO, .p.id = AV_CODEC_ID_BINKAUDIO_DCT, .priv_data_size = sizeof(BinkAudioContext), .init = decode_init, .flush = decode_flush, .close = decode_end, FF_CODEC_RECEIVE_FRAME_CB(binkaudio_receive_frame), .p.capabilities = AV_CODEC_CAP_DR1, .caps_internal = FF_CODEC_CAP_INIT_CLEANUP, };